pandas.testing.assert_series_equal#
- pandas.testing.assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_names=True, check_exact=<no_default>, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, check_freq=True, check_flags=True, rtol=<no_default>, atol=<no_default>, obj='Series', *, check_index=True, check_like=False)[source]#
- Check that left and right Series are equal. - Parameters:
- leftSeries
- rightSeries
- check_dtypebool, default True
- Whether to check the Series dtype is identical. 
- check_index_typebool or {‘equiv’}, default ‘equiv’
- Whether to check the Index class, dtype and inferred_type are identical. 
- check_series_typebool, default True
- Whether to check the Series class is identical. 
- check_namesbool, default True
- Whether to check the Series and Index names attribute. 
- check_exactbool, default False
- Whether to compare number exactly. - Changed in version 2.2.0: Defaults to True for integer dtypes if none of - check_exact,- rtoland- atolare specified.
- check_datetimelike_compatbool, default False
- Compare datetime-like which is comparable ignoring dtype. 
- check_categoricalbool, default True
- Whether to compare internal Categorical exactly. 
- check_category_orderbool, default True
- Whether to compare category order of internal Categoricals. 
- check_freqbool, default True
- Whether to check the freq attribute on a DatetimeIndex or TimedeltaIndex. 
- check_flagsbool, default True
- Whether to check the flags attribute. 
- rtolfloat, default 1e-5
- Relative tolerance. Only used when check_exact is False. 
- atolfloat, default 1e-8
- Absolute tolerance. Only used when check_exact is False. 
- objstr, default ‘Series’
- Specify object name being compared, internally used to show appropriate assertion message. 
- check_indexbool, default True
- Whether to check index equivalence. If False, then compare only values. - Added in version 1.3.0. 
- check_likebool, default False
- If True, ignore the order of the index. Must be False if check_index is False. Note: same labels must be with the same data. - Added in version 1.5.0. 
 
 - Examples - >>> from pandas import testing as tm >>> a = pd.Series([1, 2, 3, 4]) >>> b = pd.Series([1, 2, 3, 4]) >>> tm.assert_series_equal(a, b)