What’s New¶
These are new features and improvements of note in each release.
v0.19.0 (October 2, 2016)¶
This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
merge_asof()
for asof-style time-series joining, see here.rolling()
is now time-series aware, see hereread_csv()
now supports parsingCategorical
data, see here- A function
union_categorical()
has been added for combining categoricals, see here PeriodIndex
now has its ownperiod
dtype, and changed to be more consistent with otherIndex
classes. See here- Sparse data structures gained enhanced support of
int
andbool
dtypes, see here - Comparison operations with
Series
no longer ignores the index, see here for an overview of the API changes. - Introduction of a pandas development API for utility functions, see here.
- Deprecation of
Panel4D
andPanelND
. We recommend to represent these types of n-dimensional data with the xarray package. - Removal of the previously deprecated modules
pandas.io.data
,pandas.io.wb
,pandas.tools.rplot
.
Warning
pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.
What’s new in v0.19.0
- New features
merge_asof
for asof-style time-series joining.rolling()
is now time-series awareread_csv
has improved support for duplicate column namesread_csv
supports parsingCategorical
directly- Categorical Concatenation
- Semi-Month Offsets
- New Index methods
- Google BigQuery Enhancements
- Fine-grained numpy errstate
get_dummies
now returns integer dtypes- Downcast values to smallest possible dtype in
to_numeric
- pandas development API
- Other enhancements
- API changes
Series.tolist()
will now return Python typesSeries
operators for different indexesSeries
type promotion on assignment.to_datetime()
changes- Merging changes
.describe()
changesPeriod
changes- Index
+
/-
no longer used for set operations Index.difference
and.symmetric_difference
changesIndex.unique
consistently returnsIndex
MultiIndex
constructors,groupby
andset_index
preserve categorical dtypesread_csv
will progressively enumerate chunks- Sparse Changes
- Indexer dtype changes
- Other API Changes
- Deprecations
- Removal of prior version deprecations/changes
- Performance Improvements
- Bug Fixes
New features¶
merge_asof
for asof-style time-series joining¶
A long-time requested feature has been added through the merge_asof()
function, to
support asof style joining of time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is
here.
The merge_asof()
performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
In [1]: left = pd.DataFrame({'a': [1, 5, 10],
...: 'left_val': ['a', 'b', 'c']})
...:
In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
...: 'right_val': [1, 2, 3, 6, 7]})
...:
In [3]: left
Out[3]:
a left_val
0 1 a
1 5 b
2 10 c
In [4]: right
Out[4]:
a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7
We typically want to match exactly when possible, and use the most recent value otherwise.
In [5]: pd.merge_asof(left, right, on='a')
Out[5]:
a left_val right_val
0 1 a 1
1 5 b 3
2 10 c 7
We can also match rows ONLY with prior data, and not an exact match.
In [6]: pd.merge_asof(left, right, on='a', allow_exact_matches=False)
Out[6]:
a left_val right_val
0 1 a NaN
1 5 b 3.0
2 10 c 7.0
In a typical time-series example, we have trades
and quotes
and we want to asof-join
them.
This also illustrates using the by
parameter to group data before merging.
In [7]: trades = pd.DataFrame({
...: 'time': pd.to_datetime(['20160525 13:30:00.023',
...: '20160525 13:30:00.038',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.048']),
...: 'ticker': ['MSFT', 'MSFT',
...: 'GOOG', 'GOOG', 'AAPL'],
...: 'price': [51.95, 51.95,
...: 720.77, 720.92, 98.00],
...: 'quantity': [75, 155,
...: 100, 100, 100]},
...: columns=['time', 'ticker', 'price', 'quantity'])
...:
In [8]: quotes = pd.DataFrame({
...: 'time': pd.to_datetime(['20160525 13:30:00.023',
...: '20160525 13:30:00.023',
...: '20160525 13:30:00.030',
...: '20160525 13:30:00.041',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.049',
...: '20160525 13:30:00.072',
...: '20160525 13:30:00.075']),
...: 'ticker': ['GOOG', 'MSFT', 'MSFT',
...: 'MSFT', 'GOOG', 'AAPL', 'GOOG',
...: 'MSFT'],
...: 'bid': [720.50, 51.95, 51.97, 51.99,
...: 720.50, 97.99, 720.50, 52.01],
...: 'ask': [720.93, 51.96, 51.98, 52.00,
...: 720.93, 98.01, 720.88, 52.03]},
...: columns=['time', 'ticker', 'bid', 'ask'])
...:
In [9]: trades
Out[9]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
In [10]: quotes
Out[10]:
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
An asof merge joins on the on
, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the by
field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
In [11]: pd.merge_asof(trades, quotes,
....: on='time',
....: by='ticker')
....:
Out[11]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (trades
in this case), with the fields of the quotes
merged.
.rolling()
is now time-series aware¶
.rolling()
objects are now time-series aware and can accept a time-series offset (or convertible) for the window
argument (GH13327, GH12995).
See the full documentation here.
In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))
....:
In [13]: dft
Out[13]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [14]: dft.rolling(2).sum()
Out[14]:
B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN
In [15]: dft.rolling(2, min_periods=1).sum()
Out[15]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [16]: dft.rolling('2s').sum()
Out[16]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [17]: dft = DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index = pd.Index([pd.Timestamp('20130101 09:00:00'),
....: pd.Timestamp('20130101 09:00:02'),
....: pd.Timestamp('20130101 09:00:03'),
....: pd.Timestamp('20130101 09:00:05'),
....: pd.Timestamp('20130101 09:00:06')],
....: name='foo'))
....:
In [18]: dft
Out[18]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
In [19]: dft.rolling(2).sum()
Out[19]:
B
foo
2013-01-01 09:00:00 NaN
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 NaN
Using the time-specification generates variable windows for this sparse data.
In [20]: dft.rolling('2s').sum()
Out[20]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
Furthermore, we now allow an optional on
parameter to specify a column (rather than the
default of the index) in a DataFrame.
In [21]: dft = dft.reset_index()
In [22]: dft
Out[22]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
In [23]: dft.rolling('2s', on='foo').sum()
Out[23]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
read_csv
has improved support for duplicate column names¶
Duplicate column names are now supported in read_csv()
whether
they are in the file or passed in as the names
parameter (GH7160, GH9424)
In [24]: data = '0,1,2\n3,4,5'
In [25]: names = ['a', 'b', 'a']
Previous behavior:
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
a b a
0 2 1 2
1 5 4 5
The first a
column contained the same data as the second a
column, when it should have
contained the values [0, 3]
.
New behavior:
In [26]: pd.read_csv(StringIO(data), names=names)
Out[26]:
a b a.1
0 0 1 2
1 3 4 5
read_csv
supports parsing Categorical
directly¶
The read_csv()
function now supports parsing a Categorical
column when
specified as a dtype (GH10153). Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to Categorical
after parsing. See the io docs here.
In [27]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'
In [28]: pd.read_csv(StringIO(data))
Out[28]:
col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
In [29]: pd.read_csv(StringIO(data)).dtypes
Out[29]:
col1 object
col2 object
col3 int64
dtype: object
In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
Out[30]:
col1 category
col2 category
col3 category
dtype: object
Individual columns can be parsed as a Categorical
using a dict specification
In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
col1 category
col2 object
col3 int64
dtype: object
Note
The resulting categories will always be parsed as strings (object dtype).
If the categories are numeric they can be converted using the
to_numeric()
function, or as appropriate, another converter
such as to_datetime()
.
In [32]: df = pd.read_csv(StringIO(data), dtype='category')
In [33]: df.dtypes
Out[33]:
col1 category
col2 category
col3 category
dtype: object
In [34]: df['col3']
Out[34]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]
In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)
In [36]: df['col3']
Out[36]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]
Categorical Concatenation¶
A function
union_categoricals()
has been added for combining categoricals, see Unioning Categoricals (GH13361, GH:13763, issue:13846, GH14173)In [37]: from pandas.types.concat import union_categoricals In [38]: a = pd.Categorical(["b", "c"]) In [39]: b = pd.Categorical(["a", "b"]) In [40]: union_categoricals([a, b]) Out[40]: [b, c, a, b] Categories (3, object): [b, c, a]
concat
andappend
now can concatcategory
dtypes with differentcategories
asobject
dtype (GH13524)In [41]: s1 = pd.Series(['a', 'b'], dtype='category') In [42]: s2 = pd.Series(['b', 'c'], dtype='category')
Previous behavior:
In [1]: pd.concat([s1, s2]) ValueError: incompatible categories in categorical concat
New behavior:
In [43]: pd.concat([s1, s2]) Out[43]: 0 a 1 b 0 b 1 c dtype: object
Semi-Month Offsets¶
Pandas has gained new frequency offsets, SemiMonthEnd
(‘SM’) and SemiMonthBegin
(‘SMS’).
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(GH1543)
In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
In [45]: Timestamp('2016-01-01') + SemiMonthEnd()
Out[45]: Timestamp('2016-01-15 00:00:00')
In [46]: pd.date_range('2015-01-01', freq='SM', periods=4)
Out[46]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')
SemiMonthBegin:
In [47]: Timestamp('2016-01-01') + SemiMonthBegin()
Out[47]: Timestamp('2016-01-15 00:00:00')
In [48]: pd.date_range('2015-01-01', freq='SMS', periods=4)
Out[48]: DatetimeIndex(['2015-01-01', '2015-01-15', '2015-02-01', '2015-02-15'], dtype='datetime64[ns]', freq='SMS-15')
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
In [49]: pd.date_range('2015-01-01', freq='SMS-16', periods=4)
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16')
In [50]: pd.date_range('2015-01-01', freq='SM-14', periods=4)
Out[50]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')
New Index methods¶
The following methods and options are added to Index
, to be more consistent with the Series
and DataFrame
API.
Index
now supports the .where()
function for same shape indexing (GH13170)
In [51]: idx = pd.Index(['a', 'b', 'c'])
In [52]: idx.where([True, False, True])
Out[52]: Index([u'a', nan, u'c'], dtype='object')
Index
now supports .dropna()
to exclude missing values (GH6194)
In [53]: idx = pd.Index([1, 2, np.nan, 4])
In [54]: idx.dropna()
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')
For MultiIndex
, values are dropped if any level is missing by default. Specifying
how='all'
only drops values where all levels are missing.
In [55]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4],
....: [1, 2, np.nan, np.nan]])
....:
In [56]: midx
Out[56]:
MultiIndex(levels=[[1, 2, 4], [1, 2]],
labels=[[0, 1, -1, 2], [0, 1, -1, -1]])
In [57]: midx.dropna()
Out[57]:
MultiIndex(levels=[[1, 2, 4], [1, 2]],
labels=[[0, 1], [0, 1]])
In [58]: midx.dropna(how='all')
Out[58]:
MultiIndex(levels=[[1, 2, 4], [1, 2]],
labels=[[0, 1, 2], [0, 1, -1]])
Index
now supports .str.extractall()
which returns a DataFrame
, see the docs here (GH10008, GH13156)
In [59]: idx = pd.Index(["a1a2", "b1", "c1"])
In [60]: idx.str.extractall("[ab](?P<digit>\d)")
Out[60]:
digit
match
0 0 1
1 2
1 0 1
Index.astype()
now accepts an optional boolean argument copy
, which allows optional copying if the requirements on dtype are satisfied (GH13209)
Google BigQuery Enhancements¶
Fine-grained numpy errstate¶
Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas
was imported. Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaN
s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the numpy.errstate
context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas codebase. (GH13109, GH13145)
After upgrading pandas, you may see new RuntimeWarnings
being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use numpy.errstate around the source of the RuntimeWarning
to control how these conditions are handled.
get_dummies
now returns integer dtypes¶
The pd.get_dummies
function now returns dummy-encoded columns as small integers, rather than floats (GH8725). This should provide an improved memory footprint.
Previous behavior:
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
a float64
b float64
c float64
dtype: object
New behavior:
In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[61]:
a uint8
b uint8
c uint8
dtype: object
Downcast values to smallest possible dtype in to_numeric
¶
pd.to_numeric()
now accepts a downcast
parameter, which will downcast the data if possible to smallest specified numerical dtype (GH13352)
In [62]: s = ['1', 2, 3]
In [63]: pd.to_numeric(s, downcast='unsigned')
Out[63]: array([1, 2, 3], dtype=uint8)
In [64]: pd.to_numeric(s, downcast='integer')
Out[64]: array([1, 2, 3], dtype=int8)
pandas development API¶
As part of making pandas API more uniform and accessible in the future, we have created a standard
sub-package of pandas, pandas.api
to hold public API’s. We are starting by exposing type
introspection functions in pandas.api.types
. More sub-packages and officially sanctioned API’s
will be published in future versions of pandas (GH13147, GH13634)
The following are now part of this API:
In [65]: import pprint
In [66]: from pandas.api import types
In [67]: funcs = [ f for f in dir(types) if not f.startswith('_') ]
In [68]: pprint.pprint(funcs)
['is_any_int_dtype',
'is_bool',
'is_bool_dtype',
'is_categorical',
'is_categorical_dtype',
'is_complex',
'is_complex_dtype',
'is_datetime64_any_dtype',
'is_datetime64_dtype',
'is_datetime64_ns_dtype',
'is_datetime64tz_dtype',
'is_datetimetz',
'is_dict_like',
'is_dtype_equal',
'is_extension_type',
'is_float',
'is_float_dtype',
'is_floating_dtype',
'is_hashable',
'is_int64_dtype',
'is_integer',
'is_integer_dtype',
'is_iterator',
'is_list_like',
'is_named_tuple',
'is_number',
'is_numeric_dtype',
'is_object_dtype',
'is_period',
'is_period_dtype',
'is_re',
'is_re_compilable',
'is_scalar',
'is_sequence',
'is_sparse',
'is_string_dtype',
'is_timedelta64_dtype',
'is_timedelta64_ns_dtype',
'pandas_dtype']
Note
Calling these functions from the internal module pandas.core.common
will now show a DeprecationWarning
(GH13990)
Other enhancements¶
Timestamp
can now accept positional and keyword parameters similar todatetime.datetime()
(GH10758, GH11630)In [69]: pd.Timestamp(2012, 1, 1) Out[69]: Timestamp('2012-01-01 00:00:00') In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30) Out[70]: Timestamp('2012-01-01 08:30:00')
The
.resample()
function now accepts aon=
orlevel=
parameter for resampling on a datetimelike column orMultiIndex
level (GH13500)In [71]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5), ....: 'a': np.arange(5)}, ....: index=pd.MultiIndex.from_arrays([ ....: [1,2,3,4,5], ....: pd.date_range('2015-01-01', freq='W', periods=5)], ....: names=['v','d'])) ....: In [72]: df Out[72]: a date v d 1 2015-01-04 0 2015-01-04 2 2015-01-11 1 2015-01-11 3 2015-01-18 2 2015-01-18 4 2015-01-25 3 2015-01-25 5 2015-02-01 4 2015-02-01 In [73]: df.resample('M', on='date').sum() Out[73]: a date 2015-01-31 6 2015-02-28 4 In [74]: df.resample('M', level='d').sum() Out[74]: a d 2015-01-31 6 2015-02-28 4
The
.get_credentials()
method ofGbqConnector
can now first try to fetch the application default credentials. See the docs for more details (GH13577).The
.tz_localize()
method ofDatetimeIndex
andTimestamp
has gained theerrors
keyword, so you can potentially coerce nonexistent timestamps toNaT
. The default behavior remains to raising aNonExistentTimeError
(GH13057).to_hdf/read_hdf()
now accept path objects (e.g.pathlib.Path
,py.path.local
) for the file path (GH11773)The
pd.read_csv()
withengine='python'
has gained support for thedecimal
(GH12933),na_filter
(GH13321) and thememory_map
option (GH13381).Consistent with the Python API,
pd.read_csv()
will now interpret+inf
as positive infinity (GH13274)The
pd.read_html()
has gained support for thena_values
,converters
,keep_default_na
options (GH13461)Categorical.astype()
now accepts an optional boolean argumentcopy
, effective when dtype is categorical (GH13209)DataFrame
has gained the.asof()
method to return the last non-NaN values according to the selected subset (GH13358)The
DataFrame
constructor will now respect key ordering if a list ofOrderedDict
objects are passed in (GH13304)pd.read_html()
has gained support for thedecimal
option (GH12907)Series
has gained the properties.is_monotonic
,.is_monotonic_increasing
,.is_monotonic_decreasing
, similar toIndex
(GH13336)DataFrame.to_sql()
now allows a single value as the SQL type for all columns (GH11886).Series.append
now supports theignore_index
option (GH13677).to_stata()
andStataWriter
can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536).to_stata()
andStataWriter
will automatically convertdatetime64[ns]
columns to Stata format%tc
, rather than raising aValueError
(GH12259)read_stata()
andStataReader
raise with a more explicit error message when reading Stata files with repeated value labels whenconvert_categoricals=True
(GH13923)DataFrame.style
will now render sparsified MultiIndexes (GH11655)DataFrame.style
will now show column level names (e.g.DataFrame.columns.names
) (GH13775)DataFrame
has gained support to re-order the columns based on the values in a row usingdf.sort_values(by='...', axis=1)
(GH10806)In [75]: df = pd.DataFrame({'A': [2, 7], 'B': [3, 5], 'C': [4, 8]}, ....: index=['row1', 'row2']) ....: In [76]: df Out[76]: A B C row1 2 3 4 row2 7 5 8 In [77]: df.sort_values(by='row2', axis=1) Out[77]: B A C row1 3 2 4 row2 5 7 8
Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH13746)
to_html()
now has aborder
argument to control the value in the opening<table>
tag. The default is the value of thehtml.border
option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).Raise
ImportError
in the sql functions whensqlalchemy
is not installed and a connection string is used (GH11920).Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)
Timestamp
,Period
,DatetimeIndex
,PeriodIndex
and.dt
accessor have gained a.is_leap_year
property to check whether the date belongs to a leap year. (GH13727)astype()
will now accept a dict of column name to data types mapping as thedtype
argument. (GH12086)The
pd.read_json
andDataFrame.to_json
has gained support for reading and writing json lines withlines
option see Line delimited json (GH9180):func:
read_excel
now supports the true_values and false_values keyword arguments (GH13347)groupby()
will now accept a scalar and a single-element list for specifyinglevel
on a non-MultiIndex
grouper. (GH13907)Non-convertible dates in an excel date column will be returned without conversion and the column will be
object
dtype, rather than raising an exception (GH10001).pd.Timedelta(None)
is now accepted and will returnNaT
, mirroringpd.Timestamp
(GH13687)pd.read_stata()
can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH11526)Series
andIndex
now supportdivmod
which will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH14208).
API changes¶
Series.tolist()
will now return Python types¶
Series.tolist()
will now return Python types in the output, mimicking NumPy .tolist()
behavior (GH10904)
In [78]: s = pd.Series([1,2,3])
Previous behavior:
In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>
New behavior:
In [79]: type(s.tolist()[0])
Out[79]: int
Series
operators for different indexes¶
Following Series
operators have been changed to make all operators consistent,
including DataFrame
(GH1134, GH4581, GH13538)
Series
comparison operators now raiseValueError
whenindex
are different.Series
logical operators align bothindex
of left and right hand side.
Warning
Until 0.18.1, comparing Series
with the same length, would succeed even if
the .index
are different (the result ignores .index
). As of 0.19.0, this will raises ValueError
to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like .eq
.
As a result, Series
and DataFrame
operators behave as below:
Arithmetic operators¶
Arithmetic operators align both index
(no changes).
In [80]: s1 = pd.Series([1, 2, 3], index=list('ABC'))
In [81]: s2 = pd.Series([2, 2, 2], index=list('ABD'))
In [82]: s1 + s2
Out[82]:
A 3.0
B 4.0
C NaN
D NaN
dtype: float64
In [83]: df1 = pd.DataFrame([1, 2, 3], index=list('ABC'))
In [84]: df2 = pd.DataFrame([2, 2, 2], index=list('ABD'))
In [85]: df1 + df2
Out[85]:
0
A 3.0
B 4.0
C NaN
D NaN
Comparison operators¶
Comparison operators raise ValueError
when .index
are different.
Previous Behavior (Series
):
Series
compared values ignoring the .index
as long as both had the same length:
In [1]: s1 == s2
Out[1]:
A False
B True
C False
dtype: bool
New behavior (Series
):
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
Note
To achieve the same result as previous versions (compare values based on locations ignoring .index
), compare both .values
.
In [86]: s1.values == s2.values
Out[86]: array([False, True, False], dtype=bool)
If you want to compare Series
aligning its .index
, see flexible comparison methods section below:
In [87]: s1.eq(s2)
Out[87]:
A False
B True
C False
D False
dtype: bool
Current Behavior (DataFrame
, no change):
In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects
Logical operators¶
Logical operators align both .index
of left and right hand side.
Previous behavior (Series
), only left hand side index
was kept:
In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A True
B False
C False
dtype: bool
New behavior (Series
):
In [88]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [89]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [90]: s1 & s2
Out[90]:
A True
B False
C False
D False
dtype: bool
Note
Series
logical operators fill a NaN
result with False
.
Note
To achieve the same result as previous versions (compare values based on only left hand side index), you can use reindex_like
:
In [91]: s1 & s2.reindex_like(s1)
Out[91]:
A True
B False
C False
dtype: bool
Current Behavior (DataFrame
, no change):
In [92]: df1 = pd.DataFrame([True, False, True], index=list('ABC'))
In [93]: df2 = pd.DataFrame([True, True, True], index=list('ABD'))
In [94]: df1 & df2
Out[94]:
0
A True
B False
C NaN
D NaN
Flexible comparison methods¶
Series
flexible comparison methods like eq
, ne
, le
, lt
, ge
and gt
now align both index
. Use these operators if you want to compare two Series
which has the different index
.
In [95]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd'])
In [97]: s1.eq(s2)
Out[97]:
a False
b True
c False
d False
dtype: bool
In [98]: s1.ge(s2)
Out[98]:
a False
b True
c True
d False
dtype: bool
Previously, this worked the same as comparison operators (see above).
Series
type promotion on assignment¶
A Series
will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)
In [99]: s = pd.Series()
Previous behavior:
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
New behavior:
In [100]: s["a"] = pd.Timestamp("2016-01-01")
In [101]: s["b"] = 3.0
In [102]: s
Out[102]:
a 2016-01-01 00:00:00
b 3
dtype: object
In [103]: s.dtype
Out[103]: dtype('O')
.to_datetime()
changes¶
Previously if .to_datetime()
encountered mixed integers/floats and strings, but no datetimes with errors='coerce'
it would convert all to NaT
.
Previous behavior:
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
Current behavior:
This will now convert integers/floats with the default unit of ns
.
In [104]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[104]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype='datetime64[ns]', freq=None)
Bug fixes related to .to_datetime()
:
- Bug in
pd.to_datetime()
when passing integers or floats, and nounit
anderrors='coerce'
(GH13180). - Bug in
pd.to_datetime()
when passing invalid datatypes (e.g. bool); will now respect theerrors
keyword (GH13176) - Bug in
pd.to_datetime()
which overflowed onint8
, andint16
dtypes (GH13451) - Bug in
pd.to_datetime()
raiseAttributeError
withNaN
and the other string is not valid whenerrors='ignore'
(GH12424) - Bug in
pd.to_datetime()
did not cast floats correctly whenunit
was specified, resulting in truncated datetime (GH13834)
Merging changes¶
Merging will now preserve the dtype of the join keys (GH8596)
In [105]: df1 = pd.DataFrame({'key': [1], 'v1': [10]})
In [106]: df1
Out[106]:
key v1
0 1 10
In [107]: df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})
In [108]: df2
Out[108]:
key v1
0 1 20
1 2 30
Previous behavior:
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object
New behavior:
We are able to preserve the join keys
In [109]: pd.merge(df1, df2, how='outer')
Out[109]:
key v1
0 1 10
1 1 20
2 2 30
In [110]: pd.merge(df1, df2, how='outer').dtypes
Out[110]:
key int64
v1 int64
dtype: object
Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.
In [111]: pd.merge(df1, df2, how='outer', on='key')
Out[111]:
key v1_x v1_y
0 1 10.0 20
1 2 NaN 30
In [112]: pd.merge(df1, df2, how='outer', on='key').dtypes
Out[112]:
key int64
v1_x float64
v1_y int64
dtype: object
.describe()
changes¶
Percentile identifiers in the index of a .describe()
output will now be rounded to the least precision that keeps them distinct (GH13104)
In [113]: s = pd.Series([0, 1, 2, 3, 4])
In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])
Previous behavior:
The percentiles were rounded to at most one decimal place, which could raise ValueError
for a data frame if the percentiles were duplicated.
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
New behavior:
In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[115]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
dtype: float64
In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[116]:
0
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
Furthermore:
- Passing duplicated
percentiles
will now raise aValueError
. - Bug in
.describe()
on a DataFrame with a mixed-dtype column index, which would previously raise aTypeError
(GH13288)
Period
changes¶
PeriodIndex
now has period
dtype¶
PeriodIndex
now has its own period
dtype. The period
dtype is a
pandas extension dtype like category
or the timezone aware dtype (datetime64[ns, tz]
) (GH13941).
As a consequence of this change, PeriodIndex
no longer has an integer dtype:
Previous behavior:
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')
In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
In [4]: pi.dtype
Out[4]: dtype('int64')
New behavior:
In [117]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [118]: pi
Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]', freq='D')
In [119]: pd.api.types.is_integer_dtype(pi)
Out[119]: False
In [120]: pd.api.types.is_period_dtype(pi)
Out[120]: True
In [121]: pi.dtype
Out[121]: period[D]
In [122]: type(pi.dtype)
Out[122]: pandas.types.dtypes.PeriodDtype
Period('NaT')
now returns pd.NaT
¶
Previously, Period
has its own Period('NaT')
representation different from pd.NaT
. Now Period('NaT')
has been changed to return pd.NaT
. (GH12759, GH13582)
Previous behavior:
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
New behavior:
These result in pd.NaT
without providing freq
option.
In [123]: pd.Period('NaT')
Out[123]: NaT
In [124]: pd.Period(None)
Out[124]: NaT
To be compatible with Period
addition and subtraction, pd.NaT
now supports addition and subtraction with int
. Previously it raised ValueError
.
Previous behavior:
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
New behavior:
In [125]: pd.NaT + 1
Out[125]: NaT
In [126]: pd.NaT - 1
Out[126]: NaT
PeriodIndex.values
now returns array of Period
object¶
.values
is changed to return an array of Period
objects, rather than an array
of integers (GH13988).
Previous behavior:
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
array([492, 493])
New behavior:
In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)
Index +
/ -
no longer used for set operations¶
Addition and subtraction of the base Index type and of DatetimeIndex
(not the numeric index types)
previously performed set operations (set union and difference). This
behavior was already deprecated since 0.15.0 (in favor using the specific
.union()
and .difference()
methods), and is now disabled. When
possible, +
and -
are now used for element-wise operations, for
example for concatenating strings or subtracting datetimes
(GH8227, GH14127).
Previous behavior:
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')
New behavior: the same operation will now perform element-wise addition:
In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
Out[129]: Index([u'aa', u'bc'], dtype='object')
Note that numeric Index objects already performed element-wise operations.
For example, the behavior of adding two integer Indexes is unchanged.
The base Index
is now made consistent with this behavior.
In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='int64')
Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:
Previous behavior:
In [1]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
New behavior:
In [131]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)
Index.difference
and .symmetric_difference
changes¶
Index.difference
and Index.symmetric_difference
will now, more consistently, treat NaN
values as any other values. (GH13514)
In [132]: idx1 = pd.Index([1, 2, 3, np.nan])
In [133]: idx2 = pd.Index([0, 1, np.nan])
Previous behavior:
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
New behavior:
In [134]: idx1.difference(idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='float64')
In [135]: idx1.symmetric_difference(idx2)
Out[135]: Float64Index([0.0, 2.0, 3.0], dtype='float64')
Index.unique
consistently returns Index
¶
Index.unique()
now returns unique values as an
Index
of the appropriate dtype
. (GH13395).
Previously, most Index
classes returned np.ndarray
, and DatetimeIndex
,
TimedeltaIndex
and PeriodIndex
returned Index
to keep metadata like timezone.
Previous behavior:
In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)
New behavior:
In [136]: pd.Index([1, 2, 3]).unique()
Out[136]: Int64Index([1, 2, 3], dtype='int64')
In [137]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
Out[137]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)
MultiIndex
constructors, groupby
and set_index
preserve categorical dtypes¶
MultiIndex.from_arrays
and MultiIndex.from_product
will now preserve categorical dtype
in MultiIndex
levels (GH13743, GH13854).
In [138]: cat = pd.Categorical(['a', 'b'], categories=list("bac"))
In [139]: lvl1 = ['foo', 'bar']
In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1])
In [141]: midx
Out[141]:
MultiIndex(levels=[[u'b', u'a', u'c'], [u'bar', u'foo']],
labels=[[1, 0], [1, 0]])
Previous behavior:
In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')
In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')
New behavior: the single level is now a CategoricalIndex
:
In [142]: midx.levels[0]
Out[142]: CategoricalIndex([u'b', u'a', u'c'], categories=[u'b', u'a', u'c'], ordered=False, dtype='category')
In [143]: midx.get_level_values(0)
Out[143]: CategoricalIndex([u'a', u'b'], categories=[u'b', u'a', u'c'], ordered=False, dtype='category')
An analogous change has been made to MultiIndex.from_product
.
As a consequence, groupby
and set_index
also preserve categorical dtypes in indexes
In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat})
In [145]: df_grouped = df.groupby(by=['A', 'C']).first()
In [146]: df_set_idx = df.set_index(['A', 'C'])
Previous behavior:
In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
A int64
C object
B float64
dtype: object
In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object
New behavior:
In [147]: df_grouped.index.levels[1]
Out[147]: CategoricalIndex([u'b', u'a', u'c'], categories=[u'b', u'a', u'c'], ordered=False, name=u'C', dtype='category')
In [148]: df_grouped.reset_index().dtypes
Out[148]:
A int64
C category
B float64
dtype: object
In [149]: df_set_idx.index.levels[1]
Out[149]: CategoricalIndex([u'b', u'a', u'c'], categories=[u'b', u'a', u'c'], ordered=False, name=u'C', dtype='category')
In [150]: df_set_idx.reset_index().dtypes
Out[150]:
A int64
C category
B int64
dtype: object
read_csv
will progressively enumerate chunks¶
When read_csv()
is called with chunksize=n
and without specifying an index,
each chunk used to have an independently generated index from 0
to n-1
.
They are now given instead a progressive index, starting from 0
for the first chunk,
from n
for the second, and so on, so that, when concatenated, they are identical to
the result of calling read_csv()
without the chunksize=
argument
(GH12185).
In [151]: data = 'A,B\n0,1\n2,3\n4,5\n6,7'
Previous behavior:
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
A B
0 0 1
1 2 3
0 4 5
1 6 7
New behavior:
In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[152]:
A B
0 0 1
1 2 3
2 4 5
3 6 7
Sparse Changes¶
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
int64
and bool
support enhancements¶
Sparse data structures now gained enhanced support of int64
and bool
dtype
(GH667, GH13849).
Previously, sparse data were float64
dtype by default, even if all inputs were of int
or bool
dtype. You had to specify dtype
explicitly to create sparse data with int64
dtype. Also, fill_value
had to be specified explicitly because the default was np.nan
which doesn’t appear in int64
or bool
data.
In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
# specifying int64 dtype, but all values are stored in sp_values because
# fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value
defaults (0
for int64
dtype, False
for bool
dtype).
In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[153]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
In [154]: pd.SparseArray([True, False, False, False])
Out[154]:
[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)
See the docs for more details.
Operators now preserve dtypes¶
Sparse data structure now can preserve
dtype
after arithmetic ops (GH13848)In [155]: s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64) In [156]: s.dtype Out[156]: dtype('int64') In [157]: s + 1 Out[157]: 0 1 1 3 2 1 3 2 dtype: int64 BlockIndex Block locations: array([1, 3], dtype=int32) Block lengths: array([1, 1], dtype=int32)
Sparse data structure now support
astype
to convert internaldtype
(GH13900)In [158]: s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0) In [159]: s Out[159]: 0 1.0 1 0.0 2 2.0 3 0.0 dtype: float64 BlockIndex Block locations: array([0, 2], dtype=int32) Block lengths: array([1, 1], dtype=int32) In [160]: s.astype(np.int64) Out[160]: 0 1 1 0 2 2 3 0 dtype: int64 BlockIndex Block locations: array([0, 2], dtype=int32) Block lengths: array([1, 1], dtype=int32)
astype
fails if data contains values which cannot be converted to specifieddtype
. Note that the limitation is applied tofill_value
which default isnp.nan
.In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64) Out[7]: ValueError: unable to coerce current fill_value nan to int64 dtype
Other sparse fixes¶
- Subclassed
SparseDataFrame
andSparseSeries
now preserve class types when slicing or transposing. (GH13787) SparseArray
withbool
dtype now supports logical (bool) operators (GH14000)- Bug in
SparseSeries
withMultiIndex
[]
indexing may raiseIndexError
(GH13144) - Bug in
SparseSeries
withMultiIndex
[]
indexing result may have normalIndex
(GH13144) - Bug in
SparseDataFrame
in whichaxis=None
did not default toaxis=0
(GH13048) - Bug in
SparseSeries
andSparseDataFrame
creation withobject
dtype may raiseTypeError
(GH11633) - Bug in
SparseDataFrame
doesn’t respect passedSparseArray
orSparseSeries
‘s dtype andfill_value
(GH13866) - Bug in
SparseArray
andSparseSeries
don’t apply ufunc tofill_value
(GH13853) - Bug in
SparseSeries.abs
incorrectly keeps negativefill_value
(GH13853) - Bug in single row slicing on multi-type
SparseDataFrame
s, types were previously forced to float (GH13917) - Bug in
SparseSeries
slicing changes integer dtype to float (GH8292) - Bug in
SparseDataFarme
comparison ops may raiseTypeError
(GH13001) - Bug in
SparseDataFarme.isnull
raisesValueError
(GH8276) - Bug in
SparseSeries
representation withbool
dtype may raiseIndexError
(GH13110) - Bug in
SparseSeries
andSparseDataFrame
ofbool
orint64
dtype may display its values likefloat64
dtype (GH13110) - Bug in sparse indexing using
SparseArray
withbool
dtype may return incorrect result (GH13985) - Bug in
SparseArray
created fromSparseSeries
may losedtype
(GH13999) - Bug in
SparseSeries
comparison with dense returns normalSeries
rather thanSparseSeries
(GH13999)
Indexer dtype changes¶
Note
This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations
Methods such as Index.get_indexer
that return an indexer array, coerce that array to a “platform int”, so that it can be
directly used in 3rd party library operations like numpy.take
. Previously, a platform int was defined as np.int_
which corresponds to a C integer, but the correct type, and what is being used now, is np.intp
, which corresponds
to the C integer size that can hold a pointer (GH3033, GH13972).
These types are the same on many platform, but for 64 bit python on Windows,
np.int_
is 32 bits, and np.intp
is 64 bits. Changing this behavior improves performance for many
operations on that platform.
Previous behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')
New behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')
Other API Changes¶
Timestamp.to_pydatetime
will issue aUserWarning
whenwarn=True
, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH14101).Series.unique()
with datetime and timezone now returns return array ofTimestamp
with timezone (GH13565).Panel.to_sparse()
will raise aNotImplementedError
exception when called (GH13778).Index.reshape()
will raise aNotImplementedError
exception when called (GH12882)..filter()
enforces mutual exclusion of the keyword arguments (GH12399).eval
‘s upcasting rules forfloat32
types have been updated to be more consistent with NumPy’s rules. New behavior will not upcast tofloat64
if you multiply a pandasfloat32
object by a scalar float64 (GH12388).- An
UnsupportedFunctionCall
error is now raised if NumPy ufuncs likenp.mean
are called on groupby or resample objects (GH12811). __setitem__
will no longer apply a callable rhs as a function instead of storing it. Callwhere
directly to get the previous behavior (GH13299).- Calls to
.sample()
will respect the random seed set vianumpy.random.seed(n)
(GH13161) Styler.apply
is now more strict about the outputs your function must return. Foraxis=0
oraxis=1
, the output shape must be identical. Foraxis=None
, the output must be a DataFrame with identical columns and index labels (GH13222).Float64Index.astype(int)
will now raiseValueError
ifFloat64Index
containsNaN
values (GH13149)TimedeltaIndex.astype(int)
andDatetimeIndex.astype(int)
will now returnInt64Index
instead ofnp.array
(GH13209)- Passing
Period
with multiple frequencies to normalIndex
now returnsIndex
withobject
dtype (GH13664) PeriodIndex.fillna
withPeriod
has different freq now coerces toobject
dtype (GH13664)- Faceted boxplots from
DataFrame.boxplot(by=col)
now return aSeries
whenreturn_type
is not None. Previously these returned anOrderedDict
. Note that whenreturn_type=None
, the default, these still return a 2-D NumPy array (GH12216, GH7096). pd.read_hdf
will now raise aValueError
instead ofKeyError
, if a mode other thanr
,r+
anda
is supplied. (GH13623)pd.read_csv()
,pd.read_table()
, andpd.read_hdf()
raise the builtinFileNotFoundError
exception for Python 3.x when called on a nonexistent file; this is back-ported asIOError
in Python 2.x (GH14086)- More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of
CParserError
(GH13652). pd.read_csv()
in the C engine will now issue aParserWarning
or raise aValueError
whensep
encoded is more than one character long (GH14065)DataFrame.values
will now returnfloat64
with aDataFrame
of mixedint64
anduint64
dtypes, conforming tonp.find_common_type
(GH10364, GH13917).groupby.groups
will now return a dictionary ofIndex
objects, rather than a dictionary ofnp.ndarray
orlists
(GH14293)
Deprecations¶
Series.reshape
andCategorical.reshape
have been deprecated and will be removed in a subsequent release (GH12882, GH12882)PeriodIndex.to_datetime
has been deprecated in favor ofPeriodIndex.to_timestamp
(GH8254)Timestamp.to_datetime
has been deprecated in favor ofTimestamp.to_pydatetime
(GH8254)Index.to_datetime
andDatetimeIndex.to_datetime
have been deprecated in favor ofpd.to_datetime
(GH8254)pandas.core.datetools
module has been deprecated and will be removed in a subsequent release (GH14094)SparseList
has been deprecated and will be removed in a future version (GH13784)DataFrame.to_html()
andDataFrame.to_latex()
have dropped thecolSpace
parameter in favor ofcol_space
(GH13857)DataFrame.to_sql()
has deprecated theflavor
parameter, as it is superfluous when SQLAlchemy is not installed (GH13611)- Deprecated
read_csv
keywords:compact_ints
anduse_unsigned
have been deprecated and will be removed in a future version (GH13320)buffer_lines
has been deprecated and will be removed in a future version (GH13360)as_recarray
has been deprecated and will be removed in a future version (GH13373)skip_footer
has been deprecated in favor ofskipfooter
and will be removed in a future version (GH13349)
- top-level
pd.ordered_merge()
has been renamed topd.merge_ordered()
and the original name will be removed in a future version (GH13358) Timestamp.offset
property (and named arg in the constructor), has been deprecated in favor offreq
(GH12160)pd.tseries.util.pivot_annual
is deprecated. Usepivot_table
as alternative, an example is here (GH736)pd.tseries.util.isleapyear
has been deprecated and will be removed in a subsequent release. Datetime-likes now have a.is_leap_year
property (GH13727)Panel4D
andPanelND
constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides ato_xarray()
method to automate this conversion (GH13564).pandas.tseries.frequencies.get_standard_freq
is deprecated. Usepandas.tseries.frequencies.to_offset(freq).rule_code
instead (GH13874)pandas.tseries.frequencies.to_offset
‘sfreqstr
keyword is deprecated in favor offreq
(GH13874)Categorical.from_array
has been deprecated and will be removed in a future version (GH13854)
Removal of prior version deprecations/changes¶
- The
SparsePanel
class has been removed (GH13778) - The
pd.sandbox
module has been removed in favor of the external librarypandas-qt
(GH13670) - The
pandas.io.data
andpandas.io.wb
modules are removed in favor of the pandas-datareader package (GH13724). - The
pandas.tools.rplot
module has been removed in favor of the seaborn package (GH13855) DataFrame.to_csv()
has dropped theengine
parameter, as was deprecated in 0.17.1 (GH11274, GH13419)DataFrame.to_dict()
has dropped theouttype
parameter in favor oforient
(GH13627, GH8486)pd.Categorical
has dropped setting of theordered
attribute directly in favor of theset_ordered
method (GH13671)pd.Categorical
has dropped thelevels
attribute in favor ofcategories
(GH8376)DataFrame.to_sql()
has dropped themysql
option for theflavor
parameter (GH13611)Panel.shift()
has dropped thelags
parameter in favor ofperiods
(GH14041)pd.Index
has dropped thediff
method in favor ofdifference
(GH13669)pd.DataFrame
has dropped theto_wide
method in favor ofto_panel
(GH14039)Series.to_csv
has dropped thenanRep
parameter in favor ofna_rep
(GH13804)Series.xs
,DataFrame.xs
,Panel.xs
,Panel.major_xs
, andPanel.minor_xs
have dropped thecopy
parameter (GH13781)str.split
has dropped thereturn_type
parameter in favor ofexpand
(GH13701)- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH13590, GH13868). Now legacy time rules raises
ValueError
. For the list of currently supported offsets, see here. - The default value for the
return_type
parameter forDataFrame.plot.box
andDataFrame.boxplot
changed fromNone
to"axes"
. These methods will now return a matplotlib axes by default instead of a dictionary of artists. See here (GH6581). - The
tquery
anduquery
functions in thepandas.io.sql
module are removed (GH5950).
Performance Improvements¶
- Improved performance of sparse
IntIndex.intersect
(GH13082) - Improved performance of sparse arithmetic with
BlockIndex
when the number of blocks are large, though recommended to useIntIndex
in such cases (GH13082) - Improved performance of
DataFrame.quantile()
as it now operates per-block (GH11623) - Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH13166, GH13334)
- Improved performance of
DataFrameGroupBy.transform
(GH12737) - Improved performance of
Index
andSeries
.duplicated
(GH10235) - Improved performance of
Index.difference
(GH12044) - Improved performance of
RangeIndex.is_monotonic_increasing
andis_monotonic_decreasing
(GH13749) - Improved performance of datetime string parsing in
DatetimeIndex
(GH13692) - Improved performance of hashing
Period
(GH12817) - Improved performance of
factorize
of datetime with timezone (GH13750) - Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266)
- Improved performance of
groupby.groups
(GH14293) - Unecessary materializing of a MultiIndex when introspecting for memory usage (GH14308)
Bug Fixes¶
- Bug in
groupby().shift()
, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH13813) - Bug in
groupby().cumsum()
calculatingcumprod
whenaxis=1
. (GH13994) - Bug in
pd.to_timedelta()
in which theerrors
parameter was not being respected (GH13613) - Bug in
io.json.json_normalize()
, where non-ascii keys raised an exception (GH13213) - Bug when passing a not-default-indexed
Series
asxerr
oryerr
in.plot()
(GH11858) - Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH9161, GH13544)
- Bug in
DataFrame
assignment with an object-dtypedIndex
where the resultant column is mutable to the original object. (GH13522) - Bug in matplotlib
AutoDataFormatter
; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH13131) - Bug in selection from a
HDFStore
with a fixed format andstart
and/orstop
specified will now return the selected range (GH8287) - Bug in
Categorical.from_codes()
where an unhelpful error was raised when an invalidordered
parameter was passed in (GH14058) - Bug in
Series
construction from a tuple of integers on windows not returning default dtype (int64) (GH13646) - Bug in
TimedeltaIndex
addition with a Datetime-like object where addition overflow was not being caught (GH14068) - Bug in
.groupby(..).resample(..)
when the same object is called multiple times (GH13174) - Bug in
.to_records()
when index name is a unicode string (GH13172) - Bug in calling
.memory_usage()
on object which doesn’t implement (GH12924) - Regression in
Series.quantile
with nans (also shows up in.median()
and.describe()
); furthermore now names theSeries
with the quantile (GH13098, GH13146) - Bug in
SeriesGroupBy.transform
with datetime values and missing groups (GH13191) - Bug where empty
Series
were incorrectly coerced in datetime-like numeric operations (GH13844) - Bug in
Categorical
constructor when passed aCategorical
containing datetimes with timezones (GH14190) - Bug in
Series.str.extractall()
withstr
index raisesValueError
(GH13156) - Bug in
Series.str.extractall()
with single group and quantifier (GH13382) - Bug in
DatetimeIndex
andPeriod
subtraction raisesValueError
orAttributeError
rather thanTypeError
(GH13078) - Bug in
Index
andSeries
created withNaN
andNaT
mixed data may not havedatetime64
dtype (GH13324) - Bug in
Index
andSeries
may ignorenp.datetime64('nat')
andnp.timdelta64('nat')
to infer dtype (GH13324) - Bug in
PeriodIndex
andPeriod
subtraction raisesAttributeError
(GH13071) - Bug in
PeriodIndex
construction returning afloat64
index in some circumstances (GH13067) - Bug in
.resample(..)
with aPeriodIndex
not changing itsfreq
appropriately when empty (GH13067) - Bug in
.resample(..)
with aPeriodIndex
not retaining its type or name with an emptyDataFrame
appropriately when empty (GH13212) - Bug in
groupby(..).apply(..)
when the passed function returns scalar values per group (GH13468). - Bug in
groupby(..).resample(..)
where passing some keywords would raise an exception (GH13235) - Bug in
.tz_convert
on a tz-awareDateTimeIndex
that relied on index being sorted for correct results (GH13306) - Bug in
.tz_localize
withdateutil.tz.tzlocal
may return incorrect result (GH13583) - Bug in
DatetimeTZDtype
dtype withdateutil.tz.tzlocal
cannot be regarded as valid dtype (GH13583) - Bug in
pd.read_hdf()
where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231) - Bug in
.rolling()
that allowed a negative integer window in contruction of theRolling()
object, but would later fail on aggregation (GH13383) - Bug in
Series
indexing with tuple-valued data and a numeric index (GH13509) - Bug in printing
pd.DataFrame
where unusual elements with theobject
dtype were causing segfaults (GH13717) - Bug in ranking
Series
which could result in segfaults (GH13445) - Bug in various index types, which did not propagate the name of passed index (GH12309)
- Bug in
DatetimeIndex
, which did not honour thecopy=True
(GH13205) - Bug in
DatetimeIndex.is_normalized
returns incorrectly for normalized date_range in case of local timezones (GH13459) - Bug in
pd.concat
and.append
may coercesdatetime64
andtimedelta
toobject
dtype containing python built-indatetime
ortimedelta
rather thanTimestamp
orTimedelta
(GH13626) - Bug in
PeriodIndex.append
may raisesAttributeError
when the result isobject
dtype (GH13221) - Bug in
CategoricalIndex.append
may accept normallist
(GH13626) - Bug in
pd.concat
and.append
with the same timezone get reset to UTC (GH7795) - Bug in
Series
andDataFrame
.append
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH13626) - Bug in
DataFrame.to_csv()
in which float values were being quoted even though quotations were specified for non-numeric values only (GH12922, GH13259) - Bug in
DataFrame.describe()
raisingValueError
with only boolean columns (GH13898) - Bug in
MultiIndex
slicing where extra elements were returned when level is non-unique (GH12896) - Bug in
.str.replace
does not raiseTypeError
for invalid replacement (GH13438) - Bug in
MultiIndex.from_arrays
which didn’t check for input array lengths matching (GH13599) - Bug in
cartesian_product
andMultiIndex.from_product
which may raise with empty input arrays (GH12258) - Bug in
pd.read_csv()
which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH13703) - Bug in
pd.read_csv()
which caused errors to be raised when a dictionary containing scalars is passed in forna_values
(GH12224) - Bug in
pd.read_csv()
which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793) - Bug in
pd.read_csv()
withengine='python'
which raised errors when a numpy array was passed in forusecols
(GH12546) - Bug in
pd.read_csv()
where the index columns were being incorrectly parsed when parsed as dates with athousands
parameter (GH14066) - Bug in
pd.read_csv()
withengine='python'
in whichNaN
values weren’t being detected after data was converted to numeric values (GH13314) - Bug in
pd.read_csv()
in which thenrows
argument was not properly validated for both engines (GH10476) - Bug in
pd.read_csv()
withengine='python'
in which infinities of mixed-case forms were not being interpreted properly (GH13274) - Bug in
pd.read_csv()
withengine='python'
in which trailingNaN
values were not being parsed (GH13320) - Bug in
pd.read_csv()
withengine='python'
when reading from atempfile.TemporaryFile
on Windows with Python 3 (GH13398) - Bug in
pd.read_csv()
that preventsusecols
kwarg from accepting single-byte unicode strings (GH13219) - Bug in
pd.read_csv()
that preventsusecols
from being an empty set (GH13402) - Bug in
pd.read_csv()
in the C engine where the NULL character was not being parsed as NULL (GH14012) - Bug in
pd.read_csv()
withengine='c'
in which NULLquotechar
was not accepted even thoughquoting
was specified asNone
(GH13411) - Bug in
pd.read_csv()
withengine='c'
in which fields were not properly cast to float when quoting was specified as non-numeric (GH13411) - Bug in
pd.read_csv()
in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404) - Bug in
pd.read_csv()
, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH13549) - Bug in
pd.read_csv
,pd.read_table
,pd.read_fwf
,pd.read_stata
andpd.read_sas
where files were opened by parsers but not closed if bothchunksize
anditerator
wereNone
. (GH13940) - Bug in
StataReader
,StataWriter
,XportReader
andSAS7BDATReader
where a file was not properly closed when an error was raised. (GH13940) - Bug in
pd.pivot_table()
wheremargins_name
is ignored whenaggfunc
is a list (GH13354) - Bug in
pd.Series.str.zfill
,center
,ljust
,rjust
, andpad
when passing non-integers, did not raiseTypeError
(GH13598) - Bug in checking for any null objects in a
TimedeltaIndex
, which always returnedTrue
(GH13603) - Bug in
Series
arithmetic raisesTypeError
if it contains datetime-like asobject
dtype (GH13043) - Bug
Series.isnull()
andSeries.notnull()
ignorePeriod('NaT')
(GH13737) - Bug
Series.fillna()
andSeries.dropna()
don’t affect toPeriod('NaT')
(GH13737 - Bug in
.fillna(value=np.nan)
incorrectly raisesKeyError
on acategory
dtypedSeries
(GH14021) - Bug in extension dtype creation where the created types were not is/identical (GH13285)
- Bug in
.resample(..)
where incorrect warnings were triggered by IPython introspection (GH13618) - Bug in
NaT
-Period
raisesAttributeError
(GH13071) - Bug in
Series
comparison may output incorrect result if rhs containsNaT
(GH9005) - Bug in
Series
andIndex
comparison may output incorrect result if it containsNaT
withobject
dtype (GH13592) - Bug in
Period
addition raisesTypeError
ifPeriod
is on right hand side (GH13069) - Bug in
Peirod
andSeries
orIndex
comparison raisesTypeError
(GH13200) - Bug in
pd.set_eng_float_format()
that would prevent NaN and Inf from formatting (GH11981) - Bug in
.unstack
withCategorical
dtype resets.ordered
toTrue
(GH13249) - Clean some compile time warnings in datetime parsing (GH13607)
- Bug in
factorize
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH13750) - Bug in
.set_index
raisesAmbiguousTimeError
if new index contains DST boundary and multi levels (GH12920) - Bug in
.shift
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH13926) - Bug in
pd.read_hdf()
returns incorrect result when aDataFrame
with acategorical
column and a query which doesn’t match any values (GH13792) - Bug in
.iloc
when indexing with a non lex-sorted MultiIndex (GH13797) - Bug in
.loc
when indexing with date strings in a reverse sortedDatetimeIndex
(GH14316) - Bug in
Series
comparison operators when dealing with zero dim NumPy arrays (GH13006) - Bug in
.combine_first
may return incorrectdtype
(GH7630, GH10567) - Bug in
groupby
whereapply
returns different result depending on whether first result isNone
or not (GH12824) - Bug in
groupby(..).nth()
where the group key is included inconsistently if called after.head()/.tail()
(GH12839) - Bug in
.to_html
,.to_latex
and.to_string
silently ignore custom datetime formatter passed through theformatters
key word (GH10690) - Bug in
DataFrame.iterrows()
, not yielding aSeries
subclasse if defined (GH13977) - Bug in
pd.to_numeric
whenerrors='coerce'
and input contains non-hashable objects (GH13324) - Bug in invalid
Timedelta
arithmetic and comparison may raiseValueError
rather thanTypeError
(GH13624) - Bug in invalid datetime parsing in
to_datetime
andDatetimeIndex
may raiseTypeError
rather thanValueError
(GH11169, GH11287) - Bug in
Index
created with tz-awareTimestamp
and mismatchedtz
option incorrectly coerces timezone (GH13692) - Bug in
DatetimeIndex
with nanosecond frequency does not include timestamp specified withend
(GH13672) - Bug in
`Series`
when setting a slice with a`np.timedelta64`
(GH14155) - Bug in
Index
raisesOutOfBoundsDatetime
ifdatetime
exceedsdatetime64[ns]
bounds, rather than coercing toobject
dtype (GH13663) - Bug in
Index
may ignore specifieddatetime64
ortimedelta64
passed asdtype
(GH13981) - Bug in
RangeIndex
can be created without no arguments rather than raisesTypeError
(GH13793) - Bug in
.value_counts()
raisesOutOfBoundsDatetime
if data exceedsdatetime64[ns]
bounds (GH13663) - Bug in
DatetimeIndex
may raiseOutOfBoundsDatetime
if inputnp.datetime64
has other unit thanns
(GH9114) - Bug in
Series
creation withnp.datetime64
which has other unit thanns
asobject
dtype results in incorrect values (GH13876) - Bug in
resample
with timedelta data where data was casted to float (GH13119). - Bug in
pd.isnull()
pd.notnull()
raiseTypeError
if input datetime-like has other unit thanns
(GH13389) - Bug in
pd.merge()
may raiseTypeError
if input datetime-like has other unit thanns
(GH13389) - Bug in
HDFStore
/read_hdf()
discardedDatetimeIndex.name
iftz
was set (GH13884) - Bug in
Categorical.remove_unused_categories()
changes.codes
dtype to platform int (GH13261) - Bug in
groupby
withas_index=False
returns all NaN’s when grouping on multiple columns including a categorical one (GH13204) - Bug in
df.groupby(...)[...]
where getitem withInt64Index
raised an error (GH13731) - Bug in the CSS classes assigned to
DataFrame.style
for index names. Previously they were assigned"col_heading level<n> col<c>"
wheren
was the number of levels + 1. Now they are assigned"index_name level<n>"
, wheren
is the correct level for that MultiIndex. - Bug where
pd.read_gbq()
could throwImportError: No module named discovery
as a result of a naming conflict with another python package called apiclient (GH13454) - Bug in
Index.union
returns an incorrect result with a named empty index (GH13432) - Bugs in
Index.difference
andDataFrame.join
raise in Python3 when using mixed-integer indexes (GH13432, GH12814) - Bug in subtract tz-aware
datetime.datetime
from tz-awaredatetime64
series (GH14088) - Bug in
.to_excel()
when DataFrame contains a MultiIndex which contains a label with a NaN value (GH13511) - Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise
ValueError
(GH13930) - Bug in
concat
andgroupby
for hierarchical frames withRangeIndex
levels (GH13542). - Bug in
Series.str.contains()
for Series containing onlyNaN
values ofobject
dtype (GH14171) - Bug in
agg()
function on groupby dataframe changes dtype ofdatetime64[ns]
column tofloat64
(GH12821) - Bug in using NumPy ufunc with
PeriodIndex
to add or subtract integer raiseIncompatibleFrequency
. Note that using standard operator like+
or-
is recommended, because standard operators use more efficient path (GH13980) - Bug in operations on
NaT
returningfloat
instead ofdatetime64[ns]
(GH12941) - Bug in
Series
flexible arithmetic methods (like.add()
) raisesValueError
whenaxis=None
(GH13894) - Bug in
DataFrame.to_csv()
withMultiIndex
columns in which a stray empty line was added (GH6618) - Bug in
DatetimeIndex
,TimedeltaIndex
andPeriodIndex.equals()
may returnTrue
when input isn’tIndex
but contains the same values (GH13107) - Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH14146)
- Bug in
pd.eval()
andHDFStore
query truncating long float literals with python 2 (GH14241) - Bug in
Index
raisesKeyError
displaying incorrect column when column is not in the df and columns contains duplicate values (GH13822) - Bug in
Period
andPeriodIndex
creating wrong dates when frequency has combined offset aliases (GH13874) - Bug in
.to_string()
when called with an integerline_width
andindex=False
raises an UnboundLocalError exception becauseidx
referenced before assignment. - Bug in
eval()
where theresolvers
argument would not accept a list (GH14095) - Bugs in
stack
,get_dummies
,make_axis_dummies
which don’t preserve categorical dtypes in (multi)indexes (GH13854) PeridIndex
can now acceptlist
andarray
which containspd.NaT
(GH13430)- Bug in
df.groupby
where.median()
returns arbitrary values if grouped dataframe contains empty bins (GH13629) - Bug in
Index.copy()
wherename
parameter was ignored (GH14302)
v0.18.1 (May 3, 2016)¶
This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.
Highlights include:
.groupby(...)
has been enhanced to provide convenient syntax when working with.rolling(..)
,.expanding(..)
and.resample(..)
per group, see herepd.to_datetime()
has gained the ability to assemble dates from aDataFrame
, see here- Method chaining improvements, see here.
- Custom business hour offset, see here.
- Many bug fixes in the handling of
sparse
, see here - Expanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).
What’s new in v0.18.1
New features¶
Custom Business Hour¶
The CustomBusinessHour
is a mixture of BusinessHour
and CustomBusinessDay
which
allows you to specify arbitrary holidays. For details,
see Custom Business Hour (GH11514)
In [1]: from pandas.tseries.offsets import CustomBusinessHour
In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [3]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
Friday before MLK Day
In [4]: dt = datetime(2014, 1, 17, 15)
In [5]: dt + bhour_us
Out[5]: Timestamp('2014-01-17 16:00:00')
Tuesday after MLK Day (Monday is skipped because it’s a holiday)
In [6]: dt + bhour_us * 2
Out[6]: Timestamp('2014-01-20 09:00:00')
.groupby(..)
syntax with window and resample operations¶
.groupby(...)
has been enhanced to provide convenient syntax when working with .rolling(..)
, .expanding(..)
and .resample(..)
per group, see (GH12486, GH12738).
You can now use .rolling(..)
and .expanding(..)
as methods on groupbys. These return another deferred object (similar to what .rolling()
and .expanding()
do on ungrouped pandas objects). You can then operate on these RollingGroupby
objects in a similar manner.
Previously you would have to do this to get a rolling window mean per-group:
In [7]: df = pd.DataFrame({'A': [1] * 20 + [2] * 12 + [3] * 8,
...: 'B': np.arange(40)})
...:
In [8]: df
Out[8]:
A B
0 1 0
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
.. .. ..
33 3 33
34 3 34
35 3 35
36 3 36
37 3 37
38 3 38
39 3 39
[40 rows x 2 columns]
In [9]: df.groupby('A').apply(lambda x: x.rolling(4).B.mean())
Out[9]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5
...
3 33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, dtype: float64
Now you can do:
In [10]: df.groupby('A').rolling(4).B.mean()
Out[10]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5
...
3 33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, dtype: float64
For .resample(..)
type of operations, previously you would have to:
In [11]: df = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
....: periods=4,
....: freq='W'),
....: 'group': [1, 1, 2, 2],
....: 'val': [5, 6, 7, 8]}).set_index('date')
....:
In [12]: df
Out[12]:
group val
date
2016-01-03 1 5
2016-01-10 1 6
2016-01-17 2 7
2016-01-24 2 8
In [13]: df.groupby('group').apply(lambda x: x.resample('1D').ffill())
Out[13]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
... ... ...
2 2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8
[16 rows x 2 columns]
Now you can do:
In [14]: df.groupby('group').resample('1D').ffill()
Out[14]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
... ... ...
2 2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8
[16 rows x 2 columns]
Method chaininng improvements¶
The following methods / indexers now accept a callable
. It is intended to make
these more useful in method chains, see the documentation.
(GH11485, GH12533)
.where()
and.mask()
.loc[]
,iloc[]
and.ix[]
[]
indexing
.where()
and .mask()
¶
These can accept a callable for the condition and other
arguments.
In [15]: df = pd.DataFrame({'A': [1, 2, 3],
....: 'B': [4, 5, 6],
....: 'C': [7, 8, 9]})
....:
In [16]: df.where(lambda x: x > 4, lambda x: x + 10)
Out[16]:
A B C
0 11 14 7
1 12 5 8
2 13 6 9
.loc[]
, .iloc[]
, .ix[]
¶
These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or anything which is valid for these indexer’s input.
# callable returns bool indexer
In [17]: df.loc[lambda x: x.A >= 2, lambda x: x.sum() > 10]
Out[17]:
B C
1 5 8
2 6 9
# callable returns list of labels
In [18]: df.loc[lambda x: [1, 2], lambda x: ['A', 'B']]
Out[18]:
A B
1 2 5
2 3 6
[]
indexing¶
Finally, you can use a callable in []
indexing of Series, DataFrame and Panel.
The callable must return a valid input for []
indexing depending on its
class and index type.
In [19]: df[lambda x: 'A']
Out[19]:
0 1
1 2
2 3
Name: A, dtype: int64
Using these methods / indexers, you can chain data selection operations without using temporary variable.
In [20]: bb = pd.read_csv('data/baseball.csv', index_col='id')
In [21]: (bb.groupby(['year', 'team'])
....: .sum()
....: .loc[lambda df: df.r > 100]
....: )
....:
Out[21]:
stint g ab r h X2b X3b hr rbi sb cs bb \
year team
2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105
DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97
HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60
LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114
NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174
SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235
TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73
TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190
so ibb hbp sh sf gidp
year team
2007 CIN 127.0 14.0 1.0 1.0 15.0 18.0
DET 176.0 3.0 10.0 4.0 8.0 28.0
HOU 212.0 3.0 9.0 16.0 6.0 17.0
LAN 141.0 8.0 9.0 3.0 8.0 29.0
NYN 310.0 24.0 23.0 18.0 15.0 48.0
SFN 188.0 51.0 8.0 16.0 6.0 41.0
TEX 140.0 4.0 5.0 2.0 8.0 16.0
TOR 265.0 16.0 12.0 4.0 16.0 38.0
Partial string indexing on DateTimeIndex
when part of a MultiIndex
¶
Partial string indexing now matches on DateTimeIndex
when part of a MultiIndex
(GH10331)
In [22]: dft2 = pd.DataFrame(np.random.randn(20, 1),
....: columns=['A'],
....: index=pd.MultiIndex.from_product([pd.date_range('20130101',
....: periods=10,
....: freq='12H'),
....: ['a', 'b']]))
....:
In [23]: dft2
Out[23]:
A
2013-01-01 00:00:00 a 1.474071
b -0.064034
2013-01-01 12:00:00 a -1.282782
b 0.781836
2013-01-02 00:00:00 a -1.071357
b 0.441153
2013-01-02 12:00:00 a 2.353925
... ...
2013-01-04 00:00:00 b -0.845696
2013-01-04 12:00:00 a -1.340896
b 1.846883
2013-01-05 00:00:00 a -1.328865
b 1.682706
2013-01-05 12:00:00 a -1.717693
b 0.888782
[20 rows x 1 columns]
In [24]: dft2.loc['2013-01-05']
Out[24]:
A
2013-01-05 00:00:00 a -1.328865
b 1.682706
2013-01-05 12:00:00 a -1.717693
b 0.888782
On other levels
In [25]: idx = pd.IndexSlice
In [26]: dft2 = dft2.swaplevel(0, 1).sort_index()
In [27]: dft2
Out[27]:
A
a 2013-01-01 00:00:00 1.474071
2013-01-01 12:00:00 -1.282782
2013-01-02 00:00:00 -1.071357
2013-01-02 12:00:00 2.353925
2013-01-03 00:00:00 0.221471
2013-01-03 12:00:00 0.758527
2013-01-04 00:00:00 -0.964980
... ...
b 2013-01-02 12:00:00 0.583787
2013-01-03 00:00:00 -0.744471
2013-01-03 12:00:00 1.729689
2013-01-04 00:00:00 -0.845696
2013-01-04 12:00:00 1.846883
2013-01-05 00:00:00 1.682706
2013-01-05 12:00:00 0.888782
[20 rows x 1 columns]
In [28]: dft2.loc[idx[:, '2013-01-05'], :]
Out[28]:
A
a 2013-01-05 00:00:00 -1.328865
2013-01-05 12:00:00 -1.717693
b 2013-01-05 00:00:00 1.682706
2013-01-05 12:00:00 0.888782
Assembling Datetimes¶
pd.to_datetime()
has gained the ability to assemble datetimes from a passed in DataFrame
or a dict. (GH8158).
In [29]: df = pd.DataFrame({'year': [2015, 2016],
....: 'month': [2, 3],
....: 'day': [4, 5],
....: 'hour': [2, 3]})
....:
In [30]: df
Out[30]:
day hour month year
0 4 2 2 2015
1 5 3 3 2016
Assembling using the passed frame.
In [31]: pd.to_datetime(df)
Out[31]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]
You can pass only the columns that you need to assemble.
In [32]: pd.to_datetime(df[['year', 'month', 'day']])
Out[32]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
Other Enhancements¶
pd.read_csv()
now supportsdelim_whitespace=True
for the Python engine (GH12958)pd.read_csv()
now supports opening ZIP files that contains a single CSV, via extension inference or explictcompression='zip'
(GH12175)pd.read_csv()
now supports opening files using xz compression, via extension inference or explicitcompression='xz'
is specified;xz
compressions is also supported byDataFrame.to_csv
in the same way (GH11852)pd.read_msgpack()
now always gives writeable ndarrays even when compression is used (GH12359).pd.read_msgpack()
now supports serializing and de-serializing categoricals with msgpack (GH12573).to_json()
now supportsNDFrames
that contain categorical and sparse data (GH10778)interpolate()
now supportsmethod='akima'
(GH7588).pd.read_excel()
now accepts path objects (e.g.pathlib.Path
,py.path.local
) for the file path, in line with otherread_*
functions (GH12655)Added
.weekday_name
property as a component toDatetimeIndex
and the.dt
accessor. (GH11128)Index.take
now handlesallow_fill
andfill_value
consistently (GH12631)In [33]: idx = pd.Index([1., 2., 3., 4.], dtype='float') # default, allow_fill=True, fill_value=None In [34]: idx.take([2, -1]) Out[34]: Float64Index([3.0, 4.0], dtype='float64') In [35]: idx.take([2, -1], fill_value=True) Out[35]: Float64Index([3.0, nan], dtype='float64')
Index
now supports.str.get_dummies()
which returnsMultiIndex
, see Creating Indicator Variables (GH10008, GH10103)In [36]: idx = pd.Index(['a|b', 'a|c', 'b|c']) In [37]: idx.str.get_dummies('|') Out[37]: MultiIndex(levels=[[0, 1], [0, 1], [0, 1]], labels=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], names=[u'a', u'b', u'c'])
pd.crosstab()
has gained anormalize
argument for normalizing frequency tables (GH12569). Examples in the updated docs here..resample(..).interpolate()
is now supported (GH12925).isin()
now accepts passedsets
(GH12988)
Sparse changes¶
These changes conform sparse handling to return the correct types and work to make a smoother experience with indexing.
SparseArray.take
now returns a scalar for scalar input, SparseArray
for others. Furthermore, it handles a negative indexer with the same rule as Index
(GH10560, GH12796)
In [38]: s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
In [39]: s.take(0)
Out[39]: nan
In [40]: s.take([1, 2, 3])
Out[40]:
[nan, 1.0, 2.0]
Fill: nan
IntIndex
Indices: array([1, 2], dtype=int32)
- Bug in
SparseSeries[]
indexing withEllipsis
raisesKeyError
(GH9467) - Bug in
SparseArray[]
indexing with tuples are not handled properly (GH12966) - Bug in
SparseSeries.loc[]
with list-like input raisesTypeError
(GH10560) - Bug in
SparseSeries.iloc[]
with scalar input may raiseIndexError
(GH10560) - Bug in
SparseSeries.loc[]
,.iloc[]
withslice
returnsSparseArray
, rather thanSparseSeries
(GH10560) - Bug in
SparseDataFrame.loc[]
,.iloc[]
may results in denseSeries
, rather thanSparseSeries
(GH12787) - Bug in
SparseArray
addition ignoresfill_value
of right hand side (GH12910) - Bug in
SparseArray
mod raisesAttributeError
(GH12910) - Bug in
SparseArray
pow calculates1 ** np.nan
asnp.nan
which must be 1 (GH12910) - Bug in
SparseArray
comparison output may incorrect result or raiseValueError
(GH12971) - Bug in
SparseSeries.__repr__
raisesTypeError
when it is longer thanmax_rows
(GH10560) - Bug in
SparseSeries.shape
ignoresfill_value
(GH10452) - Bug in
SparseSeries
andSparseArray
may have differentdtype
from its dense values (GH12908) - Bug in
SparseSeries.reindex
incorrectly handlefill_value
(GH12797) - Bug in
SparseArray.to_frame()
results inDataFrame
, rather thanSparseDataFrame
(GH9850) - Bug in
SparseSeries.value_counts()
does not countfill_value
(GH6749) - Bug in
SparseArray.to_dense()
does not preservedtype
(GH10648) - Bug in
SparseArray.to_dense()
incorrectly handlefill_value
(GH12797) - Bug in
pd.concat()
ofSparseSeries
results in dense (GH10536) - Bug in
pd.concat()
ofSparseDataFrame
incorrectly handlefill_value
(GH9765) - Bug in
pd.concat()
ofSparseDataFrame
may raiseAttributeError
(GH12174) - Bug in
SparseArray.shift()
may raiseNameError
orTypeError
(GH12908)
API changes¶
.groupby(..).nth()
changes¶
The index in .groupby(..).nth()
output is now more consistent when the as_index
argument is passed (GH11039):
In [41]: df = DataFrame({'A' : ['a', 'b', 'a'],
....: 'B' : [1, 2, 3]})
....:
In [42]: df
Out[42]:
A B
0 a 1
1 b 2
2 a 3
Previous Behavior:
In [3]: df.groupby('A', as_index=True)['B'].nth(0)
Out[3]:
0 1
1 2
Name: B, dtype: int64
In [4]: df.groupby('A', as_index=False)['B'].nth(0)
Out[4]:
0 1
1 2
Name: B, dtype: int64
New Behavior:
In [43]: df.groupby('A', as_index=True)['B'].nth(0)
Out[43]:
A
a 1
b 2
Name: B, dtype: int64
In [44]: df.groupby('A', as_index=False)['B'].nth(0)
Out[44]:
0 1
1 2
Name: B, dtype: int64
Furthermore, previously, a .groupby
would always sort, regardless if sort=False
was passed with .nth()
.
In [45]: np.random.seed(1234)
In [46]: df = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
In [47]: df['c'] = np.random.randint(0, 4, 100)
Previous Behavior:
In [4]: df.groupby('c', sort=True).nth(1)
Out[4]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
In [5]: df.groupby('c', sort=False).nth(1)
Out[5]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
New Behavior:
In [48]: df.groupby('c', sort=True).nth(1)
Out[48]:
a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524
In [49]: df.groupby('c', sort=False).nth(1)
Out[49]:
a b
c
2 -0.720589 0.887163
3 0.859588 -0.636524
0 -0.334077 0.002118
1 0.036142 -2.074978
numpy function compatibility¶
Compatibility between pandas array-like methods (e.g. sum
and take
) and their numpy
counterparts has been greatly increased by augmenting the signatures of the pandas
methods so
as to accept arguments that can be passed in from numpy
, even if they are not necessarily
used in the pandas
implementation (GH12644, GH12638, GH12687)
.searchsorted()
forIndex
andTimedeltaIndex
now accept asorter
argument to maintain compatibility with numpy’ssearchsorted
function (GH12238)- Bug in numpy compatibility of
np.round()
on aSeries
(GH12600)
An example of this signature augmentation is illustrated below:
In [50]: sp = pd.SparseDataFrame([1, 2, 3])
In [51]: sp
Out[51]:
0
0 1
1 2
2 3
Previous behaviour:
In [2]: np.cumsum(sp, axis=0)
...
TypeError: cumsum() takes at most 2 arguments (4 given)
New behaviour:
In [52]: np.cumsum(sp, axis=0)
Out[52]:
0
0 1
1 3
2 6
Using .apply
on groupby resampling¶
Using apply
on resampling groupby operations (using a pd.TimeGrouper
) now has the same output types as similar apply
calls on other groupby operations. (GH11742).
In [53]: df = pd.DataFrame({'date': pd.to_datetime(['10/10/2000', '11/10/2000']),
....: 'value': [10, 13]})
....:
In [54]: df
Out[54]:
date value
0 2000-10-10 10
1 2000-11-10 13
Previous behavior:
In [1]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.sum())
Out[1]:
...
TypeError: cannot concatenate a non-NDFrame object
# Output is a Series
In [2]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value']].sum())
Out[2]:
date
2000-10-31 value 10
2000-11-30 value 13
dtype: int64
New Behavior:
# Output is a Series
In [55]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.sum())
Out[55]:
date
2000-10-31 10
2000-11-30 13
Freq: M, dtype: int64
# Output is a DataFrame
In [56]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value']].sum())
Out[56]:
value
date
2000-10-31 10
2000-11-30 13
Changes in read_csv
exceptions¶
In order to standardize the read_csv
API for both the c
and python
engines, both will now raise an
EmptyDataError
, a subclass of ValueError
, in response to empty columns or header (GH12493, GH12506)
Previous behaviour:
In [1]: df = pd.read_csv(StringIO(''), engine='c')
...
ValueError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')
...
StopIteration
New behaviour:
In [1]: df = pd.read_csv(StringIO(''), engine='c')
...
pandas.io.common.EmptyDataError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')
...
pandas.io.common.EmptyDataError: No columns to parse from file
In addition to this error change, several others have been made as well:
CParserError
now sub-classesValueError
instead of just aException
(GH12551)- A
CParserError
is now raised instead of a genericException
inread_csv
when thec
engine cannot parse a column (GH12506) - A
ValueError
is now raised instead of a genericException
inread_csv
when thec
engine encounters aNaN
value in an integer column (GH12506) - A
ValueError
is now raised instead of a genericException
inread_csv
whentrue_values
is specified, and thec
engine encounters an element in a column containing unencodable bytes (GH12506) pandas.parser.OverflowError
exception has been removed and has been replaced with Python’s built-inOverflowError
exception (GH12506)pd.read_csv()
no longer allows a combination of strings and integers for theusecols
parameter (GH12678)
to_datetime
error changes¶
Bugs in pd.to_datetime()
when passing a unit
with convertible entries and errors='coerce'
or non-convertible with errors='ignore'
. Furthermore, an OutOfBoundsDateime
exception will be raised when an out-of-range value is encountered for that unit when errors='raise'
. (GH11758, GH13052, GH13059)
Previous behaviour:
In [27]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[27]: NaT
In [28]: pd.to_datetime(11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long
In [29]: pd.to_datetime(11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long
New behaviour:
In [2]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[2]: Timestamp('2014-12-31 16:31:00')
In [3]: pd.to_datetime(11111111, unit='D', errors='ignore')
Out[3]: 11111111
In [4]: pd.to_datetime(11111111, unit='D', errors='raise')
OutOfBoundsDatetime: cannot convert input with unit 'D'
Other API changes¶
.swaplevel()
forSeries
,DataFrame
,Panel
, andMultiIndex
now features defaults for its first two parametersi
andj
that swap the two innermost levels of the index. (GH12934).searchsorted()
forIndex
andTimedeltaIndex
now accept asorter
argument to maintain compatibility with numpy’ssearchsorted
function (GH12238)Period
andPeriodIndex
now raisesIncompatibleFrequency
error which inheritsValueError
rather than rawValueError
(GH12615)Series.apply
for category dtype now applies the passed function to each of the.categories
(and not the.codes
), and returns acategory
dtype if possible (GH12473)read_csv
will now raise aTypeError
ifparse_dates
is neither a boolean, list, or dictionary (matches the doc-string) (GH5636)- The default for
.query()/.eval()
is nowengine=None
, which will usenumexpr
if it’s installed; otherwise it will fallback to thepython
engine. This mimics the pre-0.18.1 behavior ifnumexpr
is installed (and which, previously, if numexpr was not installed,.query()/.eval()
would raise). (GH12749) pd.show_versions()
now includespandas_datareader
version (GH12740)- Provide a proper
__name__
and__qualname__
attributes for generic functions (GH12021) pd.concat(ignore_index=True)
now usesRangeIndex
as default (GH12695)pd.merge()
andDataFrame.join()
will show aUserWarning
when merging/joining a single- with a multi-leveled dataframe (GH9455, GH12219)- Compat with
scipy
> 0.17 for deprecatedpiecewise_polynomial
interpolation method; support for the replacementfrom_derivatives
method (GH12887)
Performance Improvements¶
- Improved speed of SAS reader (GH12656, GH12961)
- Performance improvements in
.groupby(..).cumcount()
(GH11039) - Improved memory usage in
pd.read_csv()
when usingskiprows=an_integer
(GH13005) - Improved performance of
DataFrame.to_sql
when checking case sensitivity for tables. Now only checks if table has been created correctly when table name is not lower case. (GH12876) - Improved performance of
Period
construction and time series plotting (GH12903, GH11831). - Improved performance of
.str.encode()
and.str.decode()
methods (GH13008) - Improved performance of
to_numeric
if input is numeric dtype (GH12777) - Improved performance of sparse arithmetic with
IntIndex
(GH13036)
Bug Fixes¶
usecols
parameter inpd.read_csv
is now respected even when the lines of a CSV file are not even (GH12203)- Bug in
groupby.transform(..)
whenaxis=1
is specified with a non-monotonic ordered index (GH12713) - Bug in
Period
andPeriodIndex
creation raisesKeyError
iffreq="Minute"
is specified. Note that “Minute” freq is deprecated in v0.17.0, and recommended to usefreq="T"
instead (GH11854) - Bug in
.resample(...).count()
with aPeriodIndex
always raising aTypeError
(GH12774) - Bug in
.resample(...)
with aPeriodIndex
casting to aDatetimeIndex
when empty (GH12868) - Bug in
.resample(...)
with aPeriodIndex
when resampling to an existing frequency (GH12770) - Bug in printing data which contains
Period
with differentfreq
raisesValueError
(GH12615) - Bug in
Series
construction withCategorical
anddtype='category'
is specified (GH12574) - Bugs in concatenation with a coercable dtype was too aggressive, resulting in different dtypes in outputformatting when an object was longer than
display.max_rows
(GH12411, GH12045, GH11594, GH10571, GH12211) - Bug in
float_format
option with option not being validated as a callable. (GH12706) - Bug in
GroupBy.filter
whendropna=False
and no groups fulfilled the criteria (GH12768) - Bug in
__name__
of.cum*
functions (GH12021) - Bug in
.astype()
of aFloat64Inde/Int64Index
to anInt64Index
(GH12881) - Bug in roundtripping an integer based index in
.to_json()/.read_json()
whenorient='index'
(the default) (GH12866) - Bug in plotting
Categorical
dtypes cause error when attempting stacked bar plot (GH13019) - Compat with >=
numpy
1.11 forNaT
comparions (GH12969) - Bug in
.drop()
with a non-uniqueMultiIndex
. (GH12701) - Bug in
.concat
of datetime tz-aware and naive DataFrames (GH12467) - Bug in correctly raising a
ValueError
in.resample(..).fillna(..)
when passing a non-string (GH12952) - Bug fixes in various encoding and header processing issues in
pd.read_sas()
(GH12659, GH12654, GH12647, GH12809) - Bug in
pd.crosstab()
where would silently ignoreaggfunc
ifvalues=None
(GH12569). - Potential segfault in
DataFrame.to_json
when serialisingdatetime.time
(GH11473). - Potential segfault in
DataFrame.to_json
when attempting to serialise 0d array (GH11299). - Segfault in
to_json
when attempting to serialise aDataFrame
orSeries
with non-ndarray values; now supports serialization ofcategory
,sparse
, anddatetime64[ns, tz]
dtypes (GH10778). - Bug in
DataFrame.to_json
with unsupported dtype not passed to default handler (GH12554). - Bug in
.align
not returning the sub-class (GH12983) - Bug in aligning a
Series
with aDataFrame
(GH13037) - Bug in
ABCPanel
in whichPanel4D
was not being considered as a valid instance of this generic type (GH12810) - Bug in consistency of
.name
on.groupby(..).apply(..)
cases (GH12363) - Bug in
Timestamp.__repr__
that causedpprint
to fail in nested structures (GH12622) - Bug in
Timedelta.min
andTimedelta.max
, the properties now report the true minimum/maximumtimedeltas
as recognized by pandas. See the documentation. (GH12727) - Bug in
.quantile()
with interpolation may coerce tofloat
unexpectedly (GH12772) - Bug in
.quantile()
with emptySeries
may return scalar rather than emptySeries
(GH12772) - Bug in
.loc
with out-of-bounds in a large indexer would raiseIndexError
rather thanKeyError
(GH12527) - Bug in resampling when using a
TimedeltaIndex
and.asfreq()
, would previously not include the final fencepost (GH12926) - Bug in equality testing with a
Categorical
in aDataFrame
(GH12564) - Bug in
GroupBy.first()
,.last()
returns incorrect row whenTimeGrouper
is used (GH7453) - Bug in
pd.read_csv()
with thec
engine when specifyingskiprows
with newlines in quoted items (GH10911, GH12775) - Bug in
DataFrame
timezone lost when assigning tz-aware datetimeSeries
with alignment (GH12981) - Bug in
.value_counts()
whennormalize=True
anddropna=True
where nulls still contributed to the normalized count (GH12558) - Bug in
Series.value_counts()
loses name if its dtype iscategory
(GH12835) - Bug in
Series.value_counts()
loses timezone info (GH12835) - Bug in
Series.value_counts(normalize=True)
withCategorical
raisesUnboundLocalError
(GH12835) - Bug in
Panel.fillna()
ignoringinplace=True
(GH12633) - Bug in
pd.read_csv()
when specifyingnames
,usecols
, andparse_dates
simultaneously with thec
engine (GH9755) - Bug in
pd.read_csv()
when specifyingdelim_whitespace=True
andlineterminator
simultaneously with thec
engine (GH12912) - Bug in
Series.rename
,DataFrame.rename
andDataFrame.rename_axis
not treatingSeries
as mappings to relabel (GH12623). - Clean in
.rolling.min
and.rolling.max
to enhance dtype handling (GH12373) - Bug in
groupby
where complex types are coerced to float (GH12902) - Bug in
Series.map
raisesTypeError
if its dtype iscategory
or tz-awaredatetime
(GH12473) - Bugs on 32bit platforms for some test comparisons (GH12972)
- Bug in index coercion when falling back from
RangeIndex
construction (GH12893) - Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)
- Bug in slicing subclassed
DataFrame
defined to return subclassedSeries
may return normalSeries
(GH11559) - Bug in
.str
accessor methods may raiseValueError
if input hasname
and the result isDataFrame
orMultiIndex
(GH12617) - Bug in
DataFrame.last_valid_index()
andDataFrame.first_valid_index()
on empty frames (GH12800) - Bug in
CategoricalIndex.get_loc
returns different result from regularIndex
(GH12531) - Bug in
PeriodIndex.resample
where name not propagated (GH12769) - Bug in
date_range
closed
keyword and timezones (GH12684). - Bug in
pd.concat
raisesAttributeError
when input data contains tz-aware datetime and timedelta (GH12620) - Bug in
pd.concat
did not handle emptySeries
properly (GH11082) - Bug in
.plot.bar
alginment whenwidth
is specified withint
(GH12979) - Bug in
fill_value
is ignored if the argument to a binary operator is a constant (GH12723) - Bug in
pd.read_html()
when using bs4 flavor and parsing table with a header and only one column (GH9178) - Bug in
.pivot_table
whenmargins=True
anddropna=True
where nulls still contributed to margin count (GH12577) - Bug in
.pivot_table
whendropna=False
where table index/column names disappear (GH12133) - Bug in
pd.crosstab()
whenmargins=True
anddropna=False
which raised (GH12642) - Bug in
Series.name
whenname
attribute can be a hashable type (GH12610) - Bug in
.describe()
resets categorical columns information (GH11558) - Bug where
loffset
argument was not applied when callingresample().count()
on a timeseries (GH12725) pd.read_excel()
now accepts column names associated with keyword argumentnames
(GH12870)- Bug in
pd.to_numeric()
withIndex
returnsnp.ndarray
, rather thanIndex
(GH12777) - Bug in
pd.to_numeric()
with datetime-like may raiseTypeError
(GH12777) - Bug in
pd.to_numeric()
with scalar raisesValueError
(GH12777)
v0.18.0 (March 13, 2016)¶
This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718, GH11273)
Warning
numexpr
version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)
Highlights include:
- Moving and expanding window functions are now methods on Series and DataFrame,
similar to
.groupby
, see here. - Adding support for a
RangeIndex
as a specialized form of theInt64Index
for memory savings, see here. - API breaking change to the
.resample
method to make it more.groupby
like, see here. - Removal of support for positional indexing with floats, which was deprecated
since 0.14.0. This will now raise a
TypeError
, see here. - The
.to_xarray()
function has been added for compatibility with the xarray package, see here. - The
read_sas
function has been enhanced to readsas7bdat
files, see here. - Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.
pd.test()
top-level nose test runner is available (GH4327).
Check the API Changes and deprecations before updating.
What’s new in v0.18.0
- New features
- Window functions are now methods
- Changes to rename
- Range Index
- Changes to str.extract
- Addition of str.extractall
- Changes to str.cat
- Datetimelike rounding
- Formatting of Integers in FloatIndex
- Changes to dtype assignment behaviors
- to_xarray
- Latex Representation
pd.read_sas()
changes- Other enhancements
- Backwards incompatible API changes
- Performance Improvements
- Bug Fixes
New features¶
Window functions are now methods¶
Window functions have been refactored to be methods on Series/DataFrame
objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby
. See the full documentation here (GH11603, GH12373)
In [1]: np.random.seed(1234)
In [2]: df = pd.DataFrame({'A' : range(10), 'B' : np.random.randn(10)})
In [3]: df
Out[3]:
A B
0 0 0.471435
1 1 -1.190976
2 2 1.432707
3 3 -0.312652
4 4 -0.720589
5 5 0.887163
6 6 0.859588
7 7 -0.636524
8 8 0.015696
9 9 -2.242685
Previous Behavior:
In [8]: pd.rolling_mean(df,window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with
DataFrame.rolling(window=3,center=False).mean()
Out[8]:
A B
0 NaN NaN
1 NaN NaN
2 1 0.237722
3 2 -0.023640
4 3 0.133155
5 4 -0.048693
6 5 0.342054
7 6 0.370076
8 7 0.079587
9 8 -0.954504
New Behavior:
In [4]: r = df.rolling(window=3)
These show a descriptive repr
In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0]
with tab-completion of available methods and properties.
In [9]: r.
r.A r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum
r.B r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
The methods operate on the Rolling
object itself
In [6]: r.mean()
Out[6]:
A B
0 NaN NaN
1 NaN NaN
2 1.0 0.237722
3 2.0 -0.023640
4 3.0 0.133155
5 4.0 -0.048693
6 5.0 0.342054
7 6.0 0.370076
8 7.0 0.079587
9 8.0 -0.954504
They provide getitem accessors
In [7]: r['A'].mean()
Out[7]:
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
5 4.0
6 5.0
7 6.0
8 7.0
9 8.0
Name: A, dtype: float64
And multiple aggregations
In [8]: r.agg({'A' : ['mean','std'],
...: 'B' : ['mean','std']})
...:
Out[8]:
A B
mean std mean std
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 1.0 1.0 0.237722 1.327364
3 2.0 1.0 -0.023640 1.335505
4 3.0 1.0 0.133155 1.143778
5 4.0 1.0 -0.048693 0.835747
6 5.0 1.0 0.342054 0.920379
7 6.0 1.0 0.370076 0.871850
8 7.0 1.0 0.079587 0.750099
9 8.0 1.0 -0.954504 1.162285
Changes to rename¶
Series.rename
and NDFrame.rename_axis
can now take a scalar or list-like
argument for altering the Series or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)
In [9]: s = pd.Series(np.random.randn(5))
In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, dtype: float64
In [11]: df = pd.DataFrame(np.random.randn(5, 2))
In [12]: (df.rename_axis("indexname")
....: .rename_axis("columns_name", axis="columns"))
....:
Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152
The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a label to a new label. This continues to work as before for function or dict-like values.
Range Index¶
A RangeIndex
has been added to the Int64Index
sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python range
object (xrange
in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to Int64Index
if needed.
This will now be the default constructed index for NDFrame
objects, rather than previous an Int64Index
. (GH939, GH12070, GH12071, GH12109, GH12888)
Previous Behavior:
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
New Behavior:
In [13]: s = pd.Series(range(1000))
In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)
In [15]: s.index.nbytes
Out[15]: 72
Changes to str.extract¶
The .str.extract method takes a regular expression with capture groups, finds the first match in each subject string, and returns the contents of the capture groups (GH11386).
In v0.18.0, the expand
argument was added to
extract
.
expand=False
: it returns aSeries
,Index
, orDataFrame
, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).expand=True
: it always returns aDataFrame
, which is more consistent and less confusing from the perspective of a user.
Currently the default is expand=None
which gives a FutureWarning
and uses expand=False
. To avoid this warning, please explicitly specify expand
.
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame)
but in a future version of pandas this will be changed to expand=True (return DataFrame)
Out[1]:
0 1
1 2
2 NaN
dtype: object
Extracting a regular expression with one group returns a Series if
expand=False
.
In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[16]:
0 1
1 2
2 NaN
dtype: object
It returns a DataFrame
with one column if expand=True
.
In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[17]:
0
0 1
1 2
2 NaN
Calling on an Index
with a regex with exactly one capture group
returns an Index
if expand=False
.
In [18]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [19]: s.index
Out[19]: Index([u'A11', u'B22', u'C33'], dtype='object')
In [20]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[20]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')
It returns a DataFrame
with one column if expand=True
.
In [21]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[21]:
letter
0 A
1 B
2 C
Calling on an Index
with a regex with more than one capture group
raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
It returns a DataFrame
if expand=True
.
In [22]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[22]:
letter 1
0 A 11
1 B 22
2 C 33
In summary, extract(expand=True)
always returns a DataFrame
with a row for every subject string, and a column for every capture
group.
Addition of str.extractall¶
The .str.extractall method was added
(GH11386). Unlike extract
, which returns only the first
match.
In [23]: s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])
In [24]: s
Out[24]:
A a1a2
B b1
C c1
dtype: object
In [25]: s.str.extract("(?P<letter>[ab])(?P<digit>\d)", expand=False)
Out[25]:
letter digit
A a 1
B b 1
C NaN NaN
The extractall
method returns all matches.
In [26]: s.str.extractall("(?P<letter>[ab])(?P<digit>\d)")
Out[26]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
Changes to str.cat¶
The method .str.cat()
concatenates the members of a Series
. Before, if NaN
values were present in the Series, calling .str.cat()
on it would return NaN
, unlike the rest of the Series.str.*
API. This behavior has been amended to ignore NaN
values by default. (GH11435).
A new, friendlier ValueError
is added to protect against the mistake of supplying the sep
as an arg, rather than as a kwarg. (GH11334).
In [27]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ')
Out[27]: 'a b c'
In [28]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ', na_rep='?')
Out[28]: 'a b ? c'
In [2]: pd.Series(['a','b',np.nan,'c']).str.cat(' ')
ValueError: Did you mean to supply a `sep` keyword?
Datetimelike rounding¶
DatetimeIndex
, Timestamp
, TimedeltaIndex
, Timedelta
have gained the .round()
, .floor()
and .ceil()
method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)
Naive datetimes
In [29]: dr = pd.date_range('20130101 09:12:56.1234', periods=3)
In [30]: dr
Out[30]:
DatetimeIndex(['2013-01-01 09:12:56.123400', '2013-01-02 09:12:56.123400',
'2013-01-03 09:12:56.123400'],
dtype='datetime64[ns]', freq='D')
In [31]: dr.round('s')
Out[31]:
DatetimeIndex(['2013-01-01 09:12:56', '2013-01-02 09:12:56',
'2013-01-03 09:12:56'],
dtype='datetime64[ns]', freq=None)
# Timestamp scalar
In [32]: dr[0]
Out[32]: Timestamp('2013-01-01 09:12:56.123400', freq='D')
In [33]: dr[0].round('10s')
Out[33]: Timestamp('2013-01-01 09:13:00')
Tz-aware are rounded, floored and ceiled in local times
In [34]: dr = dr.tz_localize('US/Eastern')
In [35]: dr
Out[35]:
DatetimeIndex(['2013-01-01 09:12:56.123400-05:00',
'2013-01-02 09:12:56.123400-05:00',
'2013-01-03 09:12:56.123400-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')
In [36]: dr.round('s')
Out[36]:
DatetimeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
'2013-01-03 09:12:56-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
Timedeltas
In [37]: t = timedelta_range('1 days 2 hr 13 min 45 us',periods=3,freq='d')
In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',
'3 days 02:13:00.000045'],
dtype='timedelta64[ns]', freq='D')
In [39]: t.round('10min')
Out[39]: TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'], dtype='timedelta64[ns]', freq=None)
# Timedelta scalar
In [40]: t[0]
Out[40]: Timedelta('1 days 02:13:00.000045')
In [41]: t[0].round('2h')
Out[41]: Timedelta('1 days 02:00:00')
In addition, .round()
, .floor()
and .ceil()
will be available thru the .dt
accessor of Series
.
In [42]: s = pd.Series(dr)
In [43]: s
Out[43]:
0 2013-01-01 09:12:56.123400-05:00
1 2013-01-02 09:12:56.123400-05:00
2 2013-01-03 09:12:56.123400-05:00
dtype: datetime64[ns, US/Eastern]
In [44]: s.dt.round('D')
Out[44]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
Formatting of Integers in FloatIndex¶
Integers in FloatIndex
, e.g. 1., are now formatted with a decimal point and a 0
digit, e.g. 1.0
(GH11713)
This change not only affects the display to the console, but also the output of IO methods like .to_csv
or .to_html
.
Previous Behavior:
In [2]: s = pd.Series([1,2,3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
New Behavior:
In [45]: s = pd.Series([1,2,3], index=np.arange(3.))
In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
dtype: int64
In [47]: s.index
Out[47]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [48]: print(s.to_csv(path=None))
0.0,1
1.0,2
2.0,3
Changes to dtype assignment behaviors¶
When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (GH10503)
Previous Behavior:
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})
In [7]: df.dtypes
Out[7]:
a int64
b uint32
dtype: object
In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
a int64
b int64
dtype: object
New Behavior:
In [49]: df = pd.DataFrame({'a': [0, 1, 1],
....: 'b': pd.Series([100, 200, 300], dtype='uint32')})
....:
In [50]: df.dtypes
Out[50]:
a int64
b uint32
dtype: object
In [51]: ix = df['a'] == 1
In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [53]: df.dtypes
Out[53]:
a int64
b uint32
dtype: object
When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be downcasted to integer without losing precision, the dtype of the slice will be set to float instead of integer.
Previous Behavior:
In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])
In [5]: df
Out[5]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
a b c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
New Behavior:
In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
....: columns=list('abc'),
....: index=[[4,4,8], [8,10,12]])
....:
In [55]: df
Out[55]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [56]: df.ix[4, 'c'] = np.array([0., 1.])
In [57]: df
Out[57]:
a b c
4 8 1 2 0.0
10 4 5 1.0
8 12 7 8 9.0
to_xarray¶
In a future version of pandas, we will be deprecating Panel
and other > 2 ndim objects. In order to provide for continuity,
all NDFrame
objects have gained the .to_xarray()
method in order to convert to xarray
objects, which has
a pandas-like interface for > 2 ndim. (GH11972)
See the xarray full-documentation here.
In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))
In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Coordinates:
* items (items) int64 0 1
* major_axis (major_axis) int64 0 1 2
* minor_axis (minor_axis) int64 0 1 2 3
Latex Representation¶
DataFrame
has gained a ._repr_latex_()
method in order to allow for conversion to latex in a ipython/jupyter notebook using nbconvert. (GH11778)
Note that this must be activated by setting the option pd.display.latex.repr=True
(GH12182)
For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement pd.display.latex.repr=True
in the first cell to have the contained DataFrame output also stored as latex.
The options display.latex.escape
and display.latex.longtable
have also been added to the configuration and are used automatically by the to_latex
method. See the available options docs for more info.
pd.read_sas()
changes¶
read_sas
has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see here. (GH4052)
Other enhancements¶
- Handle truncated floats in SAS xport files (GH11713)
- Added option to hide index in
Series.to_string
(GH11729) read_excel
now supports s3 urls of the formats3://bucketname/filename
(GH11447)- add support for
AWS_S3_HOST
env variable when reading from s3 (GH12198) - A simple version of
Panel.round()
is now implemented (GH11763) - For Python 3.x,
round(DataFrame)
,round(Series)
,round(Panel)
will work (GH11763) sys.getsizeof(obj)
returns the memory usage of a pandas object, including the values it contains (GH11597)Series
gained anis_unique
attribute (GH11946)DataFrame.quantile
andSeries.quantile
now acceptinterpolation
keyword (GH10174).- Added
DataFrame.style.format
for more flexible formatting of cell values (GH11692) DataFrame.select_dtypes
now allows thenp.float16
typecode (GH11990)pivot_table()
now accepts most iterables for thevalues
parameter (GH12017)- Added Google
BigQuery
service account authentication support, which enables authentication on remote servers. (GH11881, GH12572). For further details see here HDFStore
is now iterable:for k in store
is equivalent tofor k in store.keys()
(GH12221).- Add missing methods/fields to
.dt
forPeriod
(GH8848) - The entire codebase has been
PEP
-ified (GH12096)
Backwards incompatible API changes¶
- the leading whitespaces have been removed from the output of
.to_string(index=False)
method (GH11833) - the
out
parameter has been removed from theSeries.round()
method. (GH11763) DataFrame.round()
leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)DataFrame.head(0)
andDataFrame.tail(0)
return empty frames, rather thanself
. (GH11937)Series.head(0)
andSeries.tail(0)
return empty series, rather thanself
. (GH11937)to_msgpack
andread_msgpack
encoding now defaults to'utf-8'
. (GH12170)- the order of keyword arguments to text file parsing functions (
.read_csv()
,.read_table()
,.read_fwf()
) changed to group related arguments. (GH11555) NaTType.isoformat
now returns the string'NaT
to allow the result to be passed to the constructor ofTimestamp
. (GH12300)
NaT and Timedelta operations¶
NaT
and Timedelta
have expanded arithmetic operations, which are extended to Series
arithmetic where applicable. Operations defined for datetime64[ns]
or timedelta64[ns]
are now also defined for NaT
(GH11564).
NaT
now supports arithmetic operations with integers and floats.
In [58]: pd.NaT * 1
Out[58]: NaT
In [59]: pd.NaT * 1.5
Out[59]: NaT
In [60]: pd.NaT / 2
Out[60]: NaT
In [61]: pd.NaT * np.nan
Out[61]: NaT
NaT
defines more arithmetic operations with datetime64[ns]
and timedelta64[ns]
.
In [62]: pd.NaT / pd.NaT
Out[62]: nan
In [63]: pd.Timedelta('1s') / pd.NaT
Out[63]: nan
NaT
may represent either a datetime64[ns]
null or a timedelta64[ns]
null.
Given the ambiguity, it is treated as a timedelta64[ns]
, which allows more operations
to succeed.
In [64]: pd.NaT + pd.NaT
Out[64]: NaT
# same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
Out[65]: Timedelta('0 days 00:00:02')
as opposed to
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
However, when wrapped in a Series
whose dtype
is datetime64[ns]
or timedelta64[ns]
,
the dtype
information is respected.
In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction,
but the operator [__add__] was passed
In [66]: pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
Out[66]:
0 NaT
dtype: timedelta64[ns]
Timedelta
division by floats
now works.
In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')
Subtraction by Timedelta
in a Series
by a Timestamp
works (GH11925)
In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))
In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
dtype: timedelta64[ns]
In [70]: pd.Timestamp('2012-01-01') - ser
Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
dtype: datetime64[ns]
NaT.isoformat()
now returns 'NaT'
. This change allows allows
pd.Timestamp
to rehydrate any timestamp like object from its isoformat
(GH12300).
Changes to msgpack¶
Forward incompatible changes in msgpack
writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (GH12129, GH10527)
Bugs in to_msgpack
and read_msgpack
introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.
Warning
Packed with | Can be unpacked with |
---|---|
pre-0.17 / Python 2 | any |
pre-0.17 / Python 3 | any |
0.17 / Python 2 |
|
0.17 / Python 3 | >=0.18 / any Python |
0.18 | >= 0.18 |
0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
Signature change for .rank¶
Series.rank
and DataFrame.rank
now have the same signature (GH11759)
Previous signature
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
ascending=True, pct=False)
Out[3]:
0 1
1 2
dtype: float64
In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
method='average', na_option='keep',
ascending=True, pct=False)
Out[4]:
0
0 1
1 2
New signature
In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:
Out[71]:
0 1.0
1 2.0
dtype: float64
In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:
Out[72]:
0
0 1.0
1 2.0
Bug in QuarterBegin with n=0¶
In previous versions, the behavior of the QuarterBegin offset was inconsistent
depending on the date when the n
parameter was 0. (GH11406)
The general semantics of anchored offsets for n=0
is to not move the date
when it is an anchor point (e.g., a quarter start date), and otherwise roll
forward to the next anchor point.
In [73]: d = pd.Timestamp('2014-02-01')
In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')
In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[75]: Timestamp('2014-02-01 00:00:00')
In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
Out[76]: Timestamp('2014-04-01 00:00:00')
For the QuarterBegin
offset in previous versions, the date would be rolled
backwards if date was in the same month as the quarter start date.
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')
This behavior has been corrected in version 0.18.0, which is consistent with
other anchored offsets like MonthBegin
and YearBegin
.
In [77]: d = pd.Timestamp('2014-02-15')
In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')
Resample API¶
Like the change in the window functions API above, .resample(...)
is changing to have a more groupby-like API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).
In [79]: np.random.seed(1234)
In [80]: df = pd.DataFrame(np.random.rand(10,4),
....: columns=list('ABCD'),
....: index=pd.date_range('2010-01-01 09:00:00', periods=10, freq='s'))
....:
In [81]: df
Out[81]:
A B C D
2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196
2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316
Previous API:
You would write a resampling operation that immediately evaluates. If a how
parameter was not provided, it
would default to how='mean'
.
In [6]: df.resample('2s')
Out[6]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
You could also specify a how
directly
In [7]: df.resample('2s', how='sum')
Out[7]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
New API:
Now, you can write .resample(..)
as a 2-stage operation like .groupby(...)
, which
yields a Resampler
.
In [82]: r = df.resample('2s')
In [83]: r
Out[83]: DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]
Downsampling¶
You can then use this object to perform operations. These are downsampling operations (going from a higher frequency to a lower one).
In [84]: r.mean()
Out[84]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
In [85]: r.sum()
Out[85]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
Furthermore, resample now supports getitem
operations to perform the resample on specific columns.
In [86]: r[['A','C']].mean()
Out[86]:
A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.633165
2010-01-01 09:00:08 0.510470 0.573201
and .aggregate
type operations.
In [87]: r.agg({'A' : 'mean', 'B' : 'sum'})
Out[87]:
A B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634
These accessors can of course, be combined
In [88]: r[['A','B']].agg(['mean','sum'])
Out[88]:
A B
mean sum mean sum
2010-01-01 09:00:00 0.485748 0.971495 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.641602 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.867969 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.249976 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.020940 0.534317 1.068634
Upsampling¶
Upsampling operations take you from a lower frequency to a higher frequency. These are now
performed with the Resampler
objects with backfill()
,
ffill()
, fillna()
and asfreq()
methods.
In [89]: s = pd.Series(np.arange(5,dtype='int64'),
....: index=date_range('2010-01-01', periods=5, freq='Q'))
....:
In [90]: s
Out[90]:
2010-03-31 0
2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, dtype: int64
Previously
In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
New API
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
Note
In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like mean
) even though you were upsampling, providing a bit of confusion.
Previous API will work but with deprecations¶
Warning
This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:
In [4]: r = df.resample('2s')
In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
Out[6]:
A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
However, getting and assignment operations directly on a Resampler
will raise a ValueError
:
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
There is a situation where the new API can not perform all the operations when using original code.
This code is intending to resample every 2s, take the mean
AND then take the min
of those results.
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
The new API will:
In [92]: df.resample('2s').min()
Out[92]:
A B C D
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581
The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise an exception.
To replicate the original operation
In [93]: df.resample('2s').mean().min()
Out[93]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
Changes to eval¶
In prior versions, new columns assignments in an eval
expression resulted
in an inplace change to the DataFrame
. (GH9297, GH8664, GH10486)
In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})
In [95]: df
Out[95]:
a b
0 0.0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4
In [12]: df.eval('c = a + b')
FutureWarning: eval expressions containing an assignment currentlydefault to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
In [13]: df
Out[13]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In version 0.18.0, a new inplace
keyword was added to choose whether the
assignment should be done inplace or return a copy.
In [96]: df
Out[96]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In [97]: df.eval('d = c - b', inplace=False)
Out[97]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
In [98]: df
Out[98]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In [99]: df.eval('d = c - b', inplace=True)
In [100]: df
Out[100]:
a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
Warning
For backwards compatability, inplace
defaults to True
if not specified.
This will change in a future version of pandas. If your code depends on an
inplace assignment you should update to explicitly set inplace=True
The inplace
keyword parameter was also added the query
method.
In [101]: df.query('a > 5')
Out[101]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
In [102]: df.query('a > 5', inplace=True)
In [103]: df
Out[103]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
Warning
Note that the default value for inplace
in a query
is False
, which is consistent with prior versions.
eval
has also been updated to allow multi-line expressions for multiple
assignments. These expressions will be evaluated one at a time in order. Only
assignments are valid for multi-line expressions.
In [104]: df
Out[104]:
a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0
In [105]: df.eval("""
.....: e = d + a
.....: f = e - 22
.....: g = f / 2.0""", inplace=True)
.....:
In [106]: df
Out[106]:
a b c d e f g
3 7.5 3 10.5 7.5 15.0 -7.0 -3.5
4 10.0 4 14.0 10.0 20.0 -2.0 -1.0
Other API Changes¶
DataFrame.between_time
andSeries.between_time
now only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises aValueError
. (GH11818)In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H', periods=10)) In [108]: s.between_time("7:00am", "9:00am") --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-108-1f395af72989> in <module>() ----> 1 s.between_time("7:00am", "9:00am") /home/joris/scipy/pandas/pandas/core/generic.pyc in between_time(self, start_time, end_time, include_start, include_end) 4042 indexer = self.index.indexer_between_time( 4043 start_time, end_time, include_start=include_start, -> 4044 include_end=include_end) 4045 return self.take(indexer, convert=False) 4046 except AttributeError: /home/joris/scipy/pandas/pandas/tseries/index.pyc in indexer_between_time(self, start_time, end_time, include_start, include_end) 1878 values_between_time : TimeSeries 1879 """ -> 1880 start_time = to_time(start_time) 1881 end_time = to_time(end_time) 1882 time_micros = self._get_time_micros() /home/joris/scipy/pandas/pandas/tseries/tools.pyc in to_time(arg, format, infer_time_format, errors) 760 return _convert_listlike(arg, format) 761 --> 762 return _convert_listlike(np.array([arg]), format)[0] 763 764 /home/joris/scipy/pandas/pandas/tseries/tools.pyc in _convert_listlike(arg, format) 740 elif errors == 'raise': 741 raise ValueError("Cannot convert arg {arg} to " --> 742 "a time".format(arg=arg)) 743 elif errors == 'ignore': 744 return arg ValueError: Cannot convert arg ['7:00am'] to a time
This will now raise.
In [2]: s.between_time('20150101 07:00:00','20150101 09:00:00') ValueError: Cannot convert arg ['20150101 07:00:00'] to a time.
.memory_usage()
now includes values in the index, as does memory_usage in.info()
(GH11597)DataFrame.to_latex()
now supports non-ascii encodings (egutf-8
) in Python 2 with the parameterencoding
(GH7061)pandas.merge()
andDataFrame.merge()
will show a specific error message when trying to merge with an object that is not of typeDataFrame
or a subclass (GH12081)DataFrame.unstack
andSeries.unstack
now takefill_value
keyword to allow direct replacement of missing values when an unstack results in missing values in the resultingDataFrame
. As an added benefit, specifyingfill_value
will preserve the data type of the original stacked data. (GH9746)As part of the new API for window functions and resampling, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in groupby.
Statistical functions for
NDFrame
objects (likesum(), mean(), min()
) will now raise if non-numpy-compatible arguments are passed in for**kwargs
(GH12301).to_latex
and.to_html
gain adecimal
parameter like.to_csv
; the default is'.'
(GH12031)More helpful error message when constructing a
DataFrame
with empty data but with indices (GH8020).describe()
will now properly handle bool dtype as a categorical (GH6625)More helpful error message with an invalid
.transform
with user defined input (GH10165)Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise
ValueError
if parameters violate0 < alpha <= 1
(GH12492)
Deprecations¶
The functions
pd.rolling_*
,pd.expanding_*
, andpd.ewm*
are deprecated and replaced by the corresponding method call. Note that the new suggested syntax includes all of the arguments (even if default) (GH11603)In [1]: s = pd.Series(range(3)) In [2]: pd.rolling_mean(s,window=2,min_periods=1) FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with Series.rolling(min_periods=1,window=2,center=False).mean() Out[2]: 0 0.0 1 0.5 2 1.5 dtype: float64 In [3]: pd.rolling_cov(s, s, window=2) FutureWarning: pd.rolling_cov is deprecated for Series and will be removed in a future version, replace with Series.rolling(window=2).cov(other=<Series>) Out[3]: 0 NaN 1 0.5 2 0.5 dtype: float64
The the
freq
andhow
arguments to the.rolling
,.expanding
, and.ewm
(new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (GH11603).For example, instead of
s.rolling(window=5,freq='D').max()
to get the max value on a rolling 5 Day window, one could uses.resample('D').mean().rolling(window=5).max()
, which first resamples the data to daily data, then provides a rolling 5 day window.pd.tseries.frequencies.get_offset_name
function is deprecated. Use offset’s.freqstr
property as alternative (GH11192)pandas.stats.fama_macbeth
routines are deprecated and will be removed in a future version (GH6077)pandas.stats.ols
,pandas.stats.plm
andpandas.stats.var
routines are deprecated and will be removed in a future version (GH6077)show a
FutureWarning
rather than aDeprecationWarning
on using long-time deprecated syntax inHDFStore.select
, where thewhere
clause is not a string-like (GH12027)The
pandas.options.display.mpl_style
configuration has been deprecated and will be removed in a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).
Removal of deprecated float indexers¶
In GH4892 indexing with floating point numbers on a non-Float64Index
was deprecated (in version 0.14.0).
In 0.18.0, this deprecation warning is removed and these will now raise a TypeError
. (GH12165, GH12333)
In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])
In [110]: s
Out[110]:
4 1
5 2
6 3
dtype: int64
In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))
In [112]: s2
Out[112]:
a 1
b 2
c 3
dtype: int64
Previous Behavior:
# this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2
# this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[3]: 2
# this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[4]: 2
# .ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not floating point
In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64
New Behavior:
For iloc, getting & setting via a float scalar will always raise.
In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [2.0] of <type 'float'>
Other indexers will coerce to a like integer for both getting and setting. The FutureWarning
has been dropped for .loc
, .ix
and []
.
In [113]: s[5.0]
Out[113]: 2
In [114]: s.loc[5.0]
Out[114]: 2
In [115]: s.ix[5.0]
Out[115]: 2
and setting
In [116]: s_copy = s.copy()
In [117]: s_copy[5.0] = 10
In [118]: s_copy
Out[118]:
4 1
5 10
6 3
dtype: int64
In [119]: s_copy = s.copy()
In [120]: s_copy.loc[5.0] = 10
In [121]: s_copy
Out[121]:
4 1
5 10
6 3
dtype: int64
In [122]: s_copy = s.copy()
In [123]: s_copy.ix[5.0] = 10
In [124]: s_copy
Out[124]:
4 1
5 10
6 3
dtype: int64
Positional setting with .ix
and a float indexer will ADD this value to the index, rather than previously setting the value by position.
In [125]: s2.ix[1.0] = 10
In [126]: s2
Out[126]:
a 1
b 2
c 3
1.0 10
dtype: int64
Slicing will also coerce integer-like floats to integers for a non-Float64Index
.
In [127]: s.loc[5.0:6]
Out[127]:
5 2
6 3
dtype: int64
In [128]: s.ix[5.0:6]
Out[128]:
5 2
6 3
dtype: int64
Note that for floats that are NOT coercible to ints, the label based bounds will be excluded
In [129]: s.loc[5.1:6]
Out[129]:
6 3
dtype: int64
In [130]: s.ix[5.1:6]
Out[130]:
6 3
dtype: int64
Float indexing on a Float64Index
is unchanged.
In [131]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [132]: s[1.0]
Out[132]: 2
In [133]: s[1.0:2.5]
Out[133]:
1.0 2
2.0 3
dtype: int64
Removal of prior version deprecations/changes¶
- Removal of
rolling_corr_pairwise
in favor of.rolling().corr(pairwise=True)
(GH4950) - Removal of
expanding_corr_pairwise
in favor of.expanding().corr(pairwise=True)
(GH4950) - Removal of
DataMatrix
module. This was not imported into the pandas namespace in any event (GH12111) - Removal of
cols
keyword in favor ofsubset
inDataFrame.duplicated()
andDataFrame.drop_duplicates()
(GH6680) - Removal of the
read_frame
andframe_query
(both aliases forpd.read_sql
) andwrite_frame
(alias ofto_sql
) functions in thepd.io.sql
namespace, deprecated since 0.14.0 (GH6292). - Removal of the
order
keyword from.factorize()
(GH6930)
Performance Improvements¶
- Improved performance of
andrews_curves
(GH11534) - Improved huge
DatetimeIndex
,PeriodIndex
andTimedeltaIndex
‘s ops performance includingNaT
(GH10277) - Improved performance of
pandas.concat
(GH11958) - Improved performance of
StataReader
(GH11591) - Improved performance in construction of
Categoricals
withSeries
of datetimes containingNaT
(GH12077) - Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros (GH11871) and with whitespace preceding the time zone (GH9714)
Bug Fixes¶
- Bug in
GroupBy.size
when data-frame is empty. (GH11699) - Bug in
Period.end_time
when a multiple of time period is requested (GH11738) - Regression in
.clip
with tz-aware datetimes (GH11838) - Bug in
date_range
when the boundaries fell on the frequency (GH11804, GH12409) - Bug in consistency of passing nested dicts to
.groupby(...).agg(...)
(GH9052) - Accept unicode in
Timedelta
constructor (GH11995) - Bug in value label reading for
StataReader
when reading incrementally (GH12014) - Bug in vectorized
DateOffset
whenn
parameter is0
(GH11370) - Compat for numpy 1.11 w.r.t.
NaT
comparison changes (GH12049) - Bug in
read_csv
when reading from aStringIO
in threads (GH11790) - Bug in not treating
NaT
as a missing value in datetimelikes when factorizing & withCategoricals
(GH12077) - Bug in getitem when the values of a
Series
were tz-aware (GH12089) - Bug in
Series.str.get_dummies
when one of the variables was ‘name’ (GH12180) - Bug in
pd.concat
while concatenating tz-aware NaT series. (GH11693, GH11755, GH12217) - Bug in
pd.read_stata
with version <= 108 files (GH12232) - Bug in
Series.resample
using a frequency ofNano
when the index is aDatetimeIndex
and contains non-zero nanosecond parts (GH12037) - Bug in resampling with
.nunique
and a sparse index (GH12352) - Removed some compiler warnings (GH12471)
- Work around compat issues with
boto
in python 3.5 (GH11915) - Bug in
NaT
subtraction fromTimestamp
orDatetimeIndex
with timezones (GH11718) - Bug in subtraction of
Series
of a single tz-awareTimestamp
(GH12290) - Use compat iterators in PY2 to support
.next()
(GH12299) - Bug in
Timedelta.round
with negative values (GH11690) - Bug in
.loc
againstCategoricalIndex
may result in normalIndex
(GH11586) - Bug in
DataFrame.info
when duplicated column names exist (GH11761) - Bug in
.copy
of datetime tz-aware objects (GH11794) - Bug in
Series.apply
andSeries.map
wheretimedelta64
was not boxed (GH11349) - Bug in
DataFrame.set_index()
with tz-awareSeries
(GH12358) - Bug in subclasses of
DataFrame
whereAttributeError
did not propagate (GH11808) - Bug groupby on tz-aware data where selection not returning
Timestamp
(GH11616) - Bug in
pd.read_clipboard
andpd.to_clipboard
functions not supporting Unicode; upgrade includedpyperclip
to v1.5.15 (GH9263) - Bug in
DataFrame.query
containing an assignment (GH8664) - Bug in
from_msgpack
where__contains__()
fails for columns of the unpackedDataFrame
, if theDataFrame
has object columns. (GH11880) - Bug in
.resample
on categorical data withTimedeltaIndex
(GH12169) - Bug in timezone info lost when broadcasting scalar datetime to
DataFrame
(GH11682) - Bug in
Index
creation fromTimestamp
with mixed tz coerces to UTC (GH11488) - Bug in
to_numeric
where it does not raise if input is more than one dimension (GH11776) - Bug in parsing timezone offset strings with non-zero minutes (GH11708)
- Bug in
df.plot
using incorrect colors for bar plots under matplotlib 1.5+ (GH11614) - Bug in the
groupby
plot
method when using keyword arguments (GH11805). - Bug in
DataFrame.duplicated
anddrop_duplicates
causing spurious matches when settingkeep=False
(GH11864) - Bug in
.loc
result with duplicated key may haveIndex
with incorrect dtype (GH11497) - Bug in
pd.rolling_median
where memory allocation failed even with sufficient memory (GH11696) - Bug in
DataFrame.style
with spurious zeros (GH12134) - Bug in
DataFrame.style
with integer columns not starting at 0 (GH12125) - Bug in
.style.bar
may not rendered properly using specific browser (GH11678) - Bug in rich comparison of
Timedelta
with anumpy.array
ofTimedelta
that caused an infinite recursion (GH11835) - Bug in
DataFrame.round
dropping column index name (GH11986) - Bug in
df.replace
while replacing value in mixed dtypeDataframe
(GH11698) - Bug in
Index
prevents copying name of passedIndex
, when a new name is not provided (GH11193) - Bug in
read_excel
failing to read any non-empty sheets when empty sheets exist andsheetname=None
(GH11711) - Bug in
read_excel
failing to raiseNotImplemented
error when keywordsparse_dates
anddate_parser
are provided (GH11544) - Bug in
read_sql
withpymysql
connections failing to return chunked data (GH11522) - Bug in
.to_csv
ignoring formatting parametersdecimal
,na_rep
,float_format
for float indexes (GH11553) - Bug in
Int64Index
andFloat64Index
preventing the use of the modulo operator (GH9244) - Bug in
MultiIndex.drop
for not lexsorted multi-indexes (GH12078) - Bug in
DataFrame
when masking an emptyDataFrame
(GH11859) - Bug in
.plot
potentially modifying thecolors
input when the number of columns didn’t match the number of series provided (GH12039). - Bug in
Series.plot
failing when index has aCustomBusinessDay
frequency (GH7222). - Bug in
.to_sql
fordatetime.time
values with sqlite fallback (GH8341) - Bug in
read_excel
failing to read data with one column whensqueeze=True
(GH12157) - Bug in
read_excel
failing to read one empty column (GH12292, GH9002) - Bug in
.groupby
where aKeyError
was not raised for a wrong column if there was only one row in the dataframe (GH11741) - Bug in
.read_csv
with dtype specified on empty data producing an error (GH12048) - Bug in
.read_csv
where strings like'2E'
are treated as valid floats (GH12237) - Bug in building pandas with debugging symbols (GH12123)
- Removed
millisecond
property ofDatetimeIndex
. This would always raise aValueError
(GH12019). - Bug in
Series
constructor with read-only data (GH11502) - Removed
pandas.util.testing.choice()
. Should usenp.random.choice()
, instead. (GH12386) - Bug in
.loc
setitem indexer preventing the use of a TZ-aware DatetimeIndex (GH12050) - Bug in
.style
indexes and multi-indexes not appearing (GH11655) - Bug in
to_msgpack
andfrom_msgpack
which did not correctly serialize or deserializeNaT
(GH12307). - Bug in
.skew
and.kurt
due to roundoff error for highly similar values (GH11974) - Bug in
Timestamp
constructor where microsecond resolution was lost if HHMMSS were not separated with ‘:’ (GH10041) - Bug in
buffer_rd_bytes
src->buffer could be freed more than once if reading failed, causing a segfault (GH12098) - Bug in
crosstab
where arguments with non-overlapping indexes would return aKeyError
(GH10291) - Bug in
DataFrame.apply
in which reduction was not being prevented for cases in whichdtype
was not a numpy dtype (GH12244) - Bug when initializing categorical series with a scalar value. (GH12336)
- Bug when specifying a UTC
DatetimeIndex
by settingutc=True
in.to_datetime
(GH11934) - Bug when increasing the buffer size of CSV reader in
read_csv
(GH12494) - Bug when setting columns of a
DataFrame
with duplicate column names (GH12344)
v0.17.1 (November 21, 2015)¶
Note
We are proud to announce that pandas has become a sponsored project of the (NUMFocus organization). This will help ensure the success of development of pandas as a world-class open-source project.
This is a minor bug-fix release from 0.17.0 and includes a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.
Highlights include:
- Support for Conditional HTML Formatting, see here
- Releasing the GIL on the csv reader & other ops, see here
- Fixed regression in
DataFrame.drop_duplicates
from 0.16.2, causing incorrect results on integer values (GH11376)
What’s new in v0.17.1
New features¶
Conditional HTML Formatting¶
Warning
This is a new feature and is under active development. We’ll be adding features an possibly making breaking changes in future releases. Feedback is welcome.
We’ve added experimental support for conditional HTML formatting:
the visual styling of a DataFrame based on the data.
The styling is accomplished with HTML and CSS.
Acesses the styler class with the pandas.DataFrame.style
, attribute,
an instance of Styler
with your data attached.
Here’s a quick example:
In [1]: np.random.seed(123) In [2]: df = DataFrame(np.random.randn(10, 5), columns=list('abcde')) In [3]: html = df.style.background_gradient(cmap='viridis', low=.5)
We can render the HTML to get the following table.
a | b | c | d | e | |
---|---|---|---|---|---|
0 | -1.085631 | 0.997345 | 0.282978 | -1.506295 | -0.5786 |
1 | 1.651437 | -2.426679 | -0.428913 | 1.265936 | -0.86674 |
2 | -0.678886 | -0.094709 | 1.49139 | -0.638902 | -0.443982 |
3 | -0.434351 | 2.20593 | 2.186786 | 1.004054 | 0.386186 |
4 | 0.737369 | 1.490732 | -0.935834 | 1.175829 | -1.253881 |
5 | -0.637752 | 0.907105 | -1.428681 | -0.140069 | -0.861755 |
6 | -0.255619 | -2.798589 | -1.771533 | -0.699877 | 0.927462 |
7 | -0.173636 | 0.002846 | 0.688223 | -0.879536 | 0.283627 |
8 | -0.805367 | -1.727669 | -0.3909 | 0.573806 | 0.338589 |
9 | -0.01183 | 2.392365 | 0.412912 | 0.978736 | 2.238143 |
Styler
interacts nicely with the Jupyter Notebook.
See the documentation for more.
Enhancements¶
DatetimeIndex
now supports conversion to strings withastype(str)
(GH10442)Support for
compression
(gzip/bz2) inpandas.DataFrame.to_csv()
(GH7615)pd.read_*
functions can now also acceptpathlib.Path
, orpy._path.local.LocalPath
objects for thefilepath_or_buffer
argument. (GH11033) - TheDataFrame
andSeries
functions.to_csv()
,.to_html()
and.to_latex()
can now handle paths beginning with tildes (e.g.~/Documents/
) (GH11438)DataFrame
now uses the fields of anamedtuple
as columns, if columns are not supplied (GH11181)DataFrame.itertuples()
now returnsnamedtuple
objects, when possible. (GH11269, GH11625)Added
axvlines_kwds
to parallel coordinates plot (GH10709)Option to
.info()
and.memory_usage()
to provide for deep introspection of memory consumption. Note that this can be expensive to compute and therefore is an optional parameter. (GH11595)In [4]: df = DataFrame({'A' : ['foo']*1000}) In [5]: df['B'] = df['A'].astype('category') # shows the '+' as we have object dtypes In [6]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 2 columns): A 1000 non-null object B 1000 non-null category dtypes: category(1), object(1) memory usage: 8.9+ KB # we have an accurate memory assessment (but can be expensive to compute this) In [7]: df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 2 columns): A 1000 non-null object B 1000 non-null category dtypes: category(1), object(1) memory usage: 48.0 KB
Index
now has afillna
method (GH10089)In [8]: pd.Index([1, np.nan, 3]).fillna(2) Out[8]: Float64Index([1.0, 2.0, 3.0], dtype='float64')
Series of type
category
now make.str.<...>
and.dt.<...>
accessor methods / properties available, if the categories are of that type. (GH10661)In [9]: s = pd.Series(list('aabb')).astype('category') In [10]: s Out[10]: 0 a 1 a 2 b 3 b dtype: category Categories (2, object): [a, b] In [11]: s.str.contains("a") Out[11]: 0 True 1 True 2 False 3 False dtype: bool In [12]: date = pd.Series(pd.date_range('1/1/2015', periods=5)).astype('category') In [13]: date Out[13]: 0 2015-01-01 1 2015-01-02 2 2015-01-03 3 2015-01-04 4 2015-01-05 dtype: category Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-01-05] In [14]: date.dt.day Out[14]: 0 1 1 2 2 3 3 4 4 5 dtype: int64
pivot_table
now has amargins_name
argument so you can use something other than the default of ‘All’ (GH3335)Implement export of
datetime64[ns, tz]
dtypes with a fixed HDF5 store (GH11411)Pretty printing sets (e.g. in DataFrame cells) now uses set literal syntax (
{x, y}
) instead of Legacy Python syntax (set([x, y])
) (GH11215)Improve the error message in
pandas.io.gbq.to_gbq()
when a streaming insert fails (GH11285) and when the DataFrame does not match the schema of the destination table (GH11359)
API changes¶
- raise
NotImplementedError
inIndex.shift
for non-supported index types (GH8038) min
andmax
reductions ondatetime64
andtimedelta64
dtyped series now result inNaT
and notnan
(GH11245).- Indexing with a null key will raise a
TypeError
, instead of aValueError
(GH11356) Series.ptp
will now ignore missing values by default (GH11163)
Performance Improvements¶
- Checking monotonic-ness before sorting on an index (GH11080)
Series.dropna
performance improvement when its dtype can’t containNaN
(GH11159)- Release the GIL on most datetime field operations (e.g.
DatetimeIndex.year
,Series.dt.year
), normalization, and conversion to and fromPeriod
,DatetimeIndex.to_period
andPeriodIndex.to_timestamp
(GH11263) - Release the GIL on some rolling algos:
rolling_median
,rolling_mean
,rolling_max
,rolling_min
,rolling_var
,rolling_kurt
,rolling_skew
(GH11450) - Release the GIL when reading and parsing text files in
read_csv
,read_table
(GH11272) - Improved performance of
rolling_median
(GH11450) - Improved performance of
to_excel
(GH11352) - Performance bug in repr of
Categorical
categories, which was rendering the strings before chopping them for display (GH11305) - Performance improvement in
Categorical.remove_unused_categories
, (GH11643). - Improved performance of
Series
constructor with no data andDatetimeIndex
(GH11433) - Improved performance of
shift
,cumprod
, andcumsum
with groupby (GH4095)
Bug Fixes¶
SparseArray.__iter__()
now does not causePendingDeprecationWarning
in Python 3.5 (GH11622)- Regression from 0.16.2 for output formatting of long floats/nan, restored in (GH11302)
Series.sort_index()
now correctly handles theinplace
option (GH11402)- Incorrectly distributed .c file in the build on
PyPi
when reading a csv of floats and passingna_values=<a scalar>
would show an exception (GH11374) - Bug in
.to_latex()
output broken when the index has a name (GH10660) - Bug in
HDFStore.append
with strings whose encoded length exceded the max unencoded length (GH11234) - Bug in merging
datetime64[ns, tz]
dtypes (GH11405) - Bug in
HDFStore.select
when comparing with a numpy scalar in a where clause (GH11283) - Bug in using
DataFrame.ix
with a multi-index indexer (GH11372) - Bug in
date_range
with ambigous endpoints (GH11626) - Prevent adding new attributes to the accessors
.str
,.dt
and.cat
. Retrieving such a value was not possible, so error out on setting it. (GH10673) - Bug in tz-conversions with an ambiguous time and
.dt
accessors (GH11295) - Bug in output formatting when using an index of ambiguous times (GH11619)
- Bug in comparisons of Series vs list-likes (GH11339)
- Bug in
DataFrame.replace
with adatetime64[ns, tz]
and a non-compat to_replace (GH11326, GH11153) - Bug in
isnull
wherenumpy.datetime64('NaT')
in anumpy.array
was not determined to be null(GH11206) - Bug in list-like indexing with a mixed-integer Index (GH11320)
- Bug in
pivot_table
withmargins=True
when indexes are ofCategorical
dtype (GH10993) - Bug in
DataFrame.plot
cannot use hex strings colors (GH10299) - Regression in
DataFrame.drop_duplicates
from 0.16.2, causing incorrect results on integer values (GH11376) - Bug in
pd.eval
where unary ops in a list error (GH11235) - Bug in
squeeze()
with zero length arrays (GH11230, GH8999) - Bug in
describe()
dropping column names for hierarchical indexes (GH11517) - Bug in
DataFrame.pct_change()
not propagatingaxis
keyword on.fillna
method (GH11150) - Bug in
.to_csv()
when a mix of integer and string column names are passed as thecolumns
parameter (GH11637) - Bug in indexing with a
range
, (GH11652) - Bug in inference of numpy scalars and preserving dtype when setting columns (GH11638)
- Bug in
to_sql
using unicode column names giving UnicodeEncodeError with (GH11431). - Fix regression in setting of
xticks
inplot
(GH11529). - Bug in
holiday.dates
where observance rules could not be applied to holiday and doc enhancement (GH11477, GH11533) - Fix plotting issues when having plain
Axes
instances instead ofSubplotAxes
(GH11520, GH11556). - Bug in
DataFrame.to_latex()
produces an extra rule whenheader=False
(GH7124) - Bug in
df.groupby(...).apply(func)
when a func returns aSeries
containing a new datetimelike column (GH11324) - Bug in
pandas.json
when file to load is big (GH11344) - Bugs in
to_excel
with duplicate columns (GH11007, GH10982, GH10970) - Fixed a bug that prevented the construction of an empty series of dtype
datetime64[ns, tz]
(GH11245). - Bug in
read_excel
with multi-index containing integers (GH11317) - Bug in
to_excel
with openpyxl 2.2+ and merging (GH11408) - Bug in
DataFrame.to_dict()
produces anp.datetime64
object instead ofTimestamp
when only datetime is present in data (GH11327) - Bug in
DataFrame.corr()
raises exception when computes Kendall correlation for DataFrames with boolean and not boolean columns (GH11560) - Bug in the link-time error caused by C
inline
functions on FreeBSD 10+ (withclang
) (GH10510) - Bug in
DataFrame.to_csv
in passing through arguments for formattingMultiIndexes
, includingdate_format
(GH7791) - Bug in
DataFrame.join()
withhow='right'
producing aTypeError
(GH11519) - Bug in
Series.quantile
with empty list results hasIndex
withobject
dtype (GH11588) - Bug in
pd.merge
results in emptyInt64Index
rather thanIndex(dtype=object)
when the merge result is empty (GH11588) - Bug in
Categorical.remove_unused_categories
when havingNaN
values (GH11599) - Bug in
DataFrame.to_sparse()
loses column names for MultiIndexes (GH11600) - Bug in
DataFrame.round()
with non-unique column index producing a Fatal Python error (GH11611) - Bug in
DataFrame.round()
withdecimals
being a non-unique indexed Series producing extra columns (GH11618)
v0.17.0 (October 9, 2015)¶
This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.17.0 will no longer support compatibility with Python version 3.2 (GH9118)
Warning
The pandas.io.data
package is deprecated and will be replaced by the
pandas-datareader package.
This will allow the data modules to be independently updated to your pandas
installation. The API for pandas-datareader v0.1.1
is exactly the same
as in pandas v0.17.0
(GH8961, GH10861).
After installing pandas-datareader, you can easily change your imports:
from pandas.io import data, wb
becomes
from pandas_datareader import data, wb
Highlights include:
- Release the Global Interpreter Lock (GIL) on some cython operations, see here
- Plotting methods are now available as attributes of the
.plot
accessor, see here - The sorting API has been revamped to remove some long-time inconsistencies, see here
- Support for a
datetime64[ns]
with timezones as a first-class dtype, see here - The default for
to_datetime
will now be toraise
when presented with unparseable formats, previously this would return the original input. Also, date parse functions now return consistent results. See here - The default for
dropna
inHDFStore
has changed toFalse
, to store by default all rows even if they are allNaN
, see here - Datetime accessor (
dt
) now supportsSeries.dt.strftime
to generate formatted strings for datetime-likes, andSeries.dt.total_seconds
to generate each duration of the timedelta in seconds. See here Period
andPeriodIndex
can handle multiplied freq like3D
, which corresponding to 3 days span. See here- Development installed versions of pandas will now have
PEP440
compliant version strings (GH9518) - Development support for benchmarking with the Air Speed Velocity library (GH8361)
- Support for reading SAS xport files, see here
- Documentation comparing SAS to pandas, see here
- Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here
- Display format with plain text can optionally align with Unicode East Asian Width, see here
- Compatibility with Python 3.5 (GH11097)
- Compatibility with matplotlib 1.5.0 (GH11111)
Check the API Changes and deprecations before updating.
What’s new in v0.17.0
- New features
- Datetime with TZ
- Releasing the GIL
- Plot submethods
- Additional methods for
dt
accessor - Period Frequency Enhancement
- Support for SAS XPORT files
- Support for Math Functions in .eval()
- Changes to Excel with
MultiIndex
- Google BigQuery Enhancements
- Display Alignment with Unicode East Asian Width
- Other enhancements
- Backwards incompatible API changes
- Changes to sorting API
- Changes to to_datetime and to_timedelta
- Changes to Index Comparisons
- Changes to Boolean Comparisons vs. None
- HDFStore dropna behavior
- Changes to
display.precision
option - Changes to
Categorical.unique
- Changes to
bool
passed asheader
in Parsers - Other API Changes
- Deprecations
- Removal of prior version deprecations/changes
- Performance Improvements
- Bug Fixes
New features¶
Datetime with TZ¶
We are adding an implementation that natively supports datetime with timezones. A Series
or a DataFrame
column previously
could be assigned a datetime with timezones, and would work as an object
dtype. This had performance issues with a large
number rows. See the docs for more details. (GH8260, GH10763, GH11034).
The new implementation allows for having a single-timezone across all rows, with operations in a performant manner.
In [1]: df = DataFrame({'A' : date_range('20130101',periods=3),
...: 'B' : date_range('20130101',periods=3,tz='US/Eastern'),
...: 'C' : date_range('20130101',periods=3,tz='CET')})
...:
In [2]: df
Out[2]:
A B C
0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
1 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-02 00:00:00+01:00
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00
In [3]: df.dtypes
Out[3]:
A datetime64[ns]
B datetime64[ns, US/Eastern]
C datetime64[ns, CET]
dtype: object
In [4]: df.B
Out[4]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
Name: B, dtype: datetime64[ns, US/Eastern]
In [5]: df.B.dt.tz_localize(None)
Out[5]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
Name: B, dtype: datetime64[ns]
This uses a new-dtype representation as well, that is very similar in look-and-feel to its numpy cousin datetime64[ns]
In [6]: df['B'].dtype
Out[6]: datetime64[ns, US/Eastern]
In [7]: type(df['B'].dtype)
Out[7]: pandas.types.dtypes.DatetimeTZDtype
Note
There is a slightly different string repr for the underlying DatetimeIndex
as a result of the dtype changes, but
functionally these are the same.
Previous Behavior:
In [1]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[1]: DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00'],
dtype='datetime64[ns]', freq='D', tz='US/Eastern')
In [2]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
Out[2]: dtype('<M8[ns]')
New Behavior:
In [8]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[8]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')
In [9]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
Out[9]: datetime64[ns, US/Eastern]
Releasing the GIL¶
We are releasing the global-interpreter-lock (GIL) on some cython operations.
This will allow other threads to run simultaneously during computation, potentially allowing performance improvements
from multi-threading. Notably groupby
, nsmallest
, value_counts
and some indexing operations benefit from this. (GH8882)
For example the groupby expression in the following code will have the GIL released during the factorization step, e.g. df.groupby('key')
as well as the .sum()
operation.
N = 1000000
ngroups = 10
df = DataFrame({'key' : np.random.randint(0,ngroups,size=N),
'data' : np.random.randn(N) })
df.groupby('key')['data'].sum()
Releasing of the GIL could benefit an application that uses threads for user interactions (e.g. QT), or performing multi-threaded computations. A nice example of a library that can handle these types of computation-in-parallel is the dask library.
Plot submethods¶
The Series and DataFrame .plot()
method allows for customizing plot types by supplying the kind
keyword arguments. Unfortunately, many of these kinds of plots use different required and optional keyword arguments, which makes it difficult to discover what any given plot kind uses out of the dozens of possible arguments.
To alleviate this issue, we have added a new, optional plotting interface, which exposes each kind of plot as a method of the .plot
attribute. Instead of writing series.plot(kind=<kind>, ...)
, you can now also use series.plot.<kind>(...)
:
In [10]: df = pd.DataFrame(np.random.rand(10, 2), columns=['a', 'b'])
In [11]: df.plot.bar()
As a result of this change, these methods are now all discoverable via tab-completion:
In [12]: df.plot.<TAB>
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
Each method signature only includes relevant arguments. Currently, these are limited to required arguments, but in the future these will include optional arguments, as well. For an overview, see the new Plotting API documentation.
Additional methods for dt
accessor¶
strftime¶
We are now supporting a Series.dt.strftime
method for datetime-likes to generate a formatted string (GH10110). Examples:
# DatetimeIndex
In [13]: s = pd.Series(pd.date_range('20130101', periods=4))
In [14]: s
Out[14]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]
In [15]: s.dt.strftime('%Y/%m/%d')
Out[15]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
# PeriodIndex
In [16]: s = pd.Series(pd.period_range('20130101', periods=4))
In [17]: s
Out[17]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object
In [18]: s.dt.strftime('%Y/%m/%d')
Out[18]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
The string format is as the python standard library and details can be found here
total_seconds¶
pd.Series
of type timedelta64
has new method .dt.total_seconds()
returning the duration of the timedelta in seconds (GH10817)
# TimedeltaIndex
In [19]: s = pd.Series(pd.timedelta_range('1 minutes', periods=4))
In [20]: s
Out[20]:
0 0 days 00:01:00
1 1 days 00:01:00
2 2 days 00:01:00
3 3 days 00:01:00
dtype: timedelta64[ns]
In [21]: s.dt.total_seconds()
Out[21]:
0 60.0
1 86460.0
2 172860.0
3 259260.0
dtype: float64
Period Frequency Enhancement¶
Period
, PeriodIndex
and period_range
can now accept multiplied freq. Also, Period.freq
and PeriodIndex.freq
are now stored as a DateOffset
instance like DatetimeIndex
, and not as str
(GH7811)
A multiplied freq represents a span of corresponding length. The example below creates a period of 3 days. Addition and subtraction will shift the period by its span.
In [22]: p = pd.Period('2015-08-01', freq='3D')
In [23]: p
Out[23]: Period('2015-08-01', '3D')
In [24]: p + 1
Out[24]: Period('2015-08-04', '3D')
In [25]: p - 2
Out[25]: Period('2015-07-26', '3D')
In [26]: p.to_timestamp()
Out[26]: Timestamp('2015-08-01 00:00:00')
In [27]: p.to_timestamp(how='E')
Out[27]: Timestamp('2015-08-03 00:00:00')
You can use the multiplied freq in PeriodIndex
and period_range
.
In [28]: idx = pd.period_range('2015-08-01', periods=4, freq='2D')
In [29]: idx
Out[29]: PeriodIndex(['2015-08-01', '2015-08-03', '2015-08-05', '2015-08-07'], dtype='period[2D]', freq='2D')
In [30]: idx + 1
Out[30]: PeriodIndex(['2015-08-03', '2015-08-05', '2015-08-07', '2015-08-09'], dtype='period[2D]', freq='2D')
Support for SAS XPORT files¶
read_sas()
provides support for reading SAS XPORT format files. (GH4052).
df = pd.read_sas('sas_xport.xpt')
It is also possible to obtain an iterator and read an XPORT file incrementally.
for df in pd.read_sas('sas_xport.xpt', chunksize=10000)
do_something(df)
See the docs for more details.
Support for Math Functions in .eval()¶
eval()
now supports calling math functions (GH4893)
df = pd.DataFrame({'a': np.random.randn(10)})
df.eval("b = sin(a)")
The support math functions are sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs and arctan2.
These functions map to the intrinsics for the NumExpr
engine. For the Python
engine, they are mapped to NumPy
calls.
Changes to Excel with MultiIndex
¶
In version 0.16.2 a DataFrame
with MultiIndex
columns could not be written to Excel via to_excel
.
That functionality has been added (GH10564), along with updating read_excel
so that the data can
be read back with, no loss of information, by specifying which columns/rows make up the MultiIndex
in the header
and index_col
parameters (GH4679)
See the documentation for more details.
In [31]: df = pd.DataFrame([[1,2,3,4], [5,6,7,8]],
....: columns = pd.MultiIndex.from_product([['foo','bar'],['a','b']],
....: names = ['col1', 'col2']),
....: index = pd.MultiIndex.from_product([['j'], ['l', 'k']],
....: names = ['i1', 'i2']))
....:
In [32]: df
Out[32]:
col1 foo bar
col2 a b a b
i1 i2
j l 1 2 3 4
k 5 6 7 8
In [33]: df.to_excel('test.xlsx')
In [34]: df = pd.read_excel('test.xlsx', header=[0,1], index_col=[0,1])
In [35]: df
Out[35]:
col1 foo bar
col2 a b a b
i1 i2
j l 1 2 3 4
k 5 6 7 8
Previously, it was necessary to specify the has_index_names
argument in read_excel
,
if the serialized data had index names. For version 0.17.0 the ouptput format of to_excel
has been changed to make this keyword unnecessary - the change is shown below.
Old
New
Warning
Excel files saved in version 0.16.2 or prior that had index names will still able to be read in,
but the has_index_names
argument must specified to True
.
Google BigQuery Enhancements¶
- Added ability to automatically create a table/dataset using the
pandas.io.gbq.to_gbq()
function if the destination table/dataset does not exist. (GH8325, GH11121). - Added ability to replace an existing table and schema when calling the
pandas.io.gbq.to_gbq()
function via theif_exists
argument. See the docs for more details (GH8325). InvalidColumnOrder
andInvalidPageToken
in the gbq module will raiseValueError
instead ofIOError
.- The
generate_bq_schema()
function is now deprecated and will be removed in a future version (GH11121) - The gbq module will now support Python 3 (GH11094).
Display Alignment with Unicode East Asian Width¶
Warning
Enabling this option will affect the performance for printing of DataFrame
and Series
(about 2 times slower).
Use only when it is actually required.
Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If a DataFrame
or Series
contains these characters, the default output cannot be aligned properly. The following options are added to enable precise handling for these characters.
display.unicode.east_asian_width
: Whether to use the Unicode East Asian Width to calculate the display text width. (GH2612)display.unicode.ambiguous_as_wide
: Whether to handle Unicode characters belong to Ambiguous as Wide. (GH11102)
In [36]: df = pd.DataFrame({u'国籍': ['UK', u'日本'], u'名前': ['Alice', u'しのぶ']})
In [37]: df;
In [38]: pd.set_option('display.unicode.east_asian_width', True)
In [39]: df;
For further details, see here
Other enhancements¶
Support for
openpyxl
>= 2.2. The API for style support is now stable (GH10125)merge
now accepts the argumentindicator
which adds a Categorical-type column (by default called_merge
) to the output object that takes on the values (GH8790)Observation Origin _merge
valueMerge key only in 'left'
frameleft_only
Merge key only in 'right'
frameright_only
Merge key in both frames both
In [40]: df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']}) In [41]: df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]}) In [42]: pd.merge(df1, df2, on='col1', how='outer', indicator=True) Out[42]: col1 col_left col_right _merge 0 0 a NaN left_only 1 1 b 2.0 both 2 2 NaN 2.0 right_only 3 2 NaN 2.0 right_only
For more, see the updated docs
pd.to_numeric
is a new function to coerce strings to numbers (possibly with coercion) (GH11133)pd.merge
will now allow duplicate column names if they are not merged upon (GH10639).pd.pivot
will now allow passing index asNone
(GH3962).pd.concat
will now use existing Series names if provided (GH10698).In [43]: foo = pd.Series([1,2], name='foo') In [44]: bar = pd.Series([1,2]) In [45]: baz = pd.Series([4,5])
Previous Behavior:
In [1] pd.concat([foo, bar, baz], 1) Out[1]: 0 1 2 0 1 1 4 1 2 2 5
New Behavior:
In [46]: pd.concat([foo, bar, baz], 1) Out[46]: foo 0 1 0 1 1 4 1 2 2 5
DataFrame
has gained thenlargest
andnsmallest
methods (GH10393)Add a
limit_direction
keyword argument that works withlimit
to enableinterpolate
to fillNaN
values forward, backward, or both (GH9218, GH10420, GH11115)In [47]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13]) In [48]: ser.interpolate(limit=1, limit_direction='both') Out[48]: 0 NaN 1 5.0 2 5.0 3 7.0 4 NaN 5 11.0 6 13.0 dtype: float64
Added a
DataFrame.round
method to round the values to a variable number of decimal places (GH10568).In [49]: df = pd.DataFrame(np.random.random([3, 3]), columns=['A', 'B', 'C'], ....: index=['first', 'second', 'third']) ....: In [50]: df Out[50]: A B C first 0.342764 0.304121 0.417022 second 0.681301 0.875457 0.510422 third 0.669314 0.585937 0.624904 In [51]: df.round(2) Out[51]: A B C first 0.34 0.30 0.42 second 0.68 0.88 0.51 third 0.67 0.59 0.62 In [52]: df.round({'A': 0, 'C': 2}) Out[52]: A B C first 0.0 0.304121 0.42 second 1.0 0.875457 0.51 third 1.0 0.585937 0.62
drop_duplicates
andduplicated
now accept akeep
keyword to target first, last, and all duplicates. Thetake_last
keyword is deprecated, see here (GH6511, GH8505)In [53]: s = pd.Series(['A', 'B', 'C', 'A', 'B', 'D']) In [54]: s.drop_duplicates() Out[54]: 0 A 1 B 2 C 5 D dtype: object In [55]: s.drop_duplicates(keep='last') Out[55]: 2 C 3 A 4 B 5 D dtype: object In [56]: s.drop_duplicates(keep=False) Out[56]: 2 C 5 D dtype: object
Reindex now has a
tolerance
argument that allows for finer control of Limits on filling while reindexing (GH10411):In [57]: df = pd.DataFrame({'x': range(5), ....: 't': pd.date_range('2000-01-01', periods=5)}) ....: In [58]: df.reindex([0.1, 1.9, 3.5], ....: method='nearest', ....: tolerance=0.2) ....: Out[58]: t x 0.1 2000-01-01 0.0 1.9 2000-01-03 2.0 3.5 NaT NaN
When used on a
DatetimeIndex
,TimedeltaIndex
orPeriodIndex
,tolerance
will coerced into aTimedelta
if possible. This allows you to specify tolerance with a string:In [59]: df = df.set_index('t') In [60]: df.reindex(pd.to_datetime(['1999-12-31']), ....: method='nearest', ....: tolerance='1 day') ....: Out[60]: x 1999-12-31 0
tolerance
is also exposed by the lower levelIndex.get_indexer
andIndex.get_loc
methods.Added functionality to use the
base
argument when resampling aTimeDeltaIndex
(GH10530)DatetimeIndex
can be instantiated using strings containsNaT
(GH7599)to_datetime
can now accept theyearfirst
keyword (GH7599)pandas.tseries.offsets
larger than theDay
offset can now be used with aSeries
for addition/subtraction (GH10699). See the docs for more details.pd.Timedelta.total_seconds()
now returns Timedelta duration to ns precision (previously microsecond precision) (GH10939)PeriodIndex
now supports arithmetic withnp.ndarray
(GH10638)Support pickling of
Period
objects (GH10439).as_blocks
will now take acopy
optional argument to return a copy of the data, default is to copy (no change in behavior from prior versions), (GH9607)regex
argument toDataFrame.filter
now handles numeric column names instead of raisingValueError
(GH10384).Enable reading gzip compressed files via URL, either by explicitly setting the compression parameter or by inferring from the presence of the HTTP Content-Encoding header in the response (GH8685)
Enable writing Excel files in memory using StringIO/BytesIO (GH7074)
Enable serialization of lists and dicts to strings in
ExcelWriter
(GH8188)SQL io functions now accept a SQLAlchemy connectable. (GH7877)
pd.read_sql
andto_sql
can accept database URI ascon
parameter (GH10214)read_sql_table
will now allow reading from views (GH10750).Enable writing complex values to
HDFStores
when using thetable
format (GH10447)Enable
pd.read_hdf
to be used without specifying a key when the HDF file contains a single dataset (GH10443)pd.read_stata
will now read Stata 118 type files. (GH9882)msgpack
submodule has been updated to 0.4.6 with backward compatibility (GH10581)DataFrame.to_dict
now acceptsorient='index'
keyword argument (GH10844).DataFrame.apply
will return a Series of dicts if the passed function returns a dict andreduce=True
(GH8735).Allow passing kwargs to the interpolation methods (GH10378).
Improved error message when concatenating an empty iterable of
Dataframe
objects (GH9157)pd.read_csv
can now read bz2-compressed files incrementally, and the C parser can read bz2-compressed files from AWS S3 (GH11070, GH11072).In
pd.read_csv
, recognizes3n://
ands3a://
URLs as designating S3 file storage (GH11070, GH11071).Read CSV files from AWS S3 incrementally, instead of first downloading the entire file. (Full file download still required for compressed files in Python 2.) (GH11070, GH11073)
pd.read_csv
is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074).
Backwards incompatible API changes¶
Changes to sorting API¶
The sorting API has had some longtime inconsistencies. (GH9816, GH8239).
Here is a summary of the API PRIOR to 0.17.0:
Series.sort
is INPLACE whileDataFrame.sort
returns a new object.Series.order
returns a new object- It was possible to use
Series/DataFrame.sort_index
to sort by values by passing theby
keyword. Series/DataFrame.sortlevel
worked only on aMultiIndex
for sorting by index.
To address these issues, we have revamped the API:
- We have introduced a new method,
DataFrame.sort_values()
, which is the merger ofDataFrame.sort()
,Series.sort()
, andSeries.order()
, to handle sorting of values. - The existing methods
Series.sort()
,Series.order()
, andDataFrame.sort()
have been deprecated and will be removed in a future version. - The
by
argument ofDataFrame.sort_index()
has been deprecated and will be removed in a future version. - The existing method
.sort_index()
will gain thelevel
keyword to enable level sorting.
We now have two distinct and non-overlapping methods of sorting. A *
marks items that
will show a FutureWarning
.
To sort by the values:
Previous | Replacement |
---|---|
* Series.order() |
Series.sort_values() |
* Series.sort() |
Series.sort_values(inplace=True) |
* DataFrame.sort(columns=...) |
DataFrame.sort_values(by=...) |
To sort by the index:
Previous | Replacement |
---|---|
Series.sort_index() |
Series.sort_index() |
Series.sortlevel(level=...) |
Series.sort_index(level=... ) |
DataFrame.sort_index() |
DataFrame.sort_index() |
DataFrame.sortlevel(level=...) |
DataFrame.sort_index(level=...) |
* DataFrame.sort() |
DataFrame.sort_index() |
We have also deprecated and changed similar methods in two Series-like classes, Index
and Categorical
.
Previous | Replacement |
---|---|
* Index.order() |
Index.sort_values() |
* Categorical.order() |
Categorical.sort_values() |
Changes to to_datetime and to_timedelta¶
Error handling¶
The default for pd.to_datetime
error handling has changed to errors='raise'
.
In prior versions it was errors='ignore'
. Furthermore, the coerce
argument
has been deprecated in favor of errors='coerce'
. This means that invalid parsing
will raise rather that return the original input as in previous versions. (GH10636)
Previous Behavior:
In [2]: pd.to_datetime(['2009-07-31', 'asd'])
Out[2]: array(['2009-07-31', 'asd'], dtype=object)
New Behavior:
In [3]: pd.to_datetime(['2009-07-31', 'asd'])
ValueError: Unknown string format
Of course you can coerce this as well.
In [61]: to_datetime(['2009-07-31', 'asd'], errors='coerce')
Out[61]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
To keep the previous behavior, you can use errors='ignore'
:
In [62]: to_datetime(['2009-07-31', 'asd'], errors='ignore')
Out[62]: array(['2009-07-31', 'asd'], dtype=object)
Furthermore, pd.to_timedelta
has gained a similar API, of errors='raise'|'ignore'|'coerce'
, and the coerce
keyword
has been deprecated in favor of errors='coerce'
.
Consistent Parsing¶
The string parsing of to_datetime
, Timestamp
and DatetimeIndex
has
been made consistent. (GH7599)
Prior to v0.17.0, Timestamp
and to_datetime
may parse year-only datetime-string incorrectly using today’s date, otherwise DatetimeIndex
uses the beginning of the year. Timestamp
and to_datetime
may raise ValueError
in some types of datetime-string which DatetimeIndex
can parse, such as a quarterly string.
Previous Behavior:
In [1]: Timestamp('2012Q2')
Traceback
...
ValueError: Unable to parse 2012Q2
# Results in today's date.
In [2]: Timestamp('2014')
Out [2]: 2014-08-12 00:00:00
v0.17.0 can parse them as below. It works on DatetimeIndex
also.
New Behavior:
In [63]: Timestamp('2012Q2')
Out[63]: Timestamp('2012-04-01 00:00:00')
In [64]: Timestamp('2014')
Out[64]: Timestamp('2014-01-01 00:00:00')
In [65]: DatetimeIndex(['2012Q2', '2014'])
Out[65]: DatetimeIndex(['2012-04-01', '2014-01-01'], dtype='datetime64[ns]', freq=None)
Note
If you want to perform calculations based on today’s date, use Timestamp.now()
and pandas.tseries.offsets
.
In [66]: import pandas.tseries.offsets as offsets
In [67]: Timestamp.now()
Out[67]: Timestamp('2016-10-02 16:23:30.154237')
In [68]: Timestamp.now() + offsets.DateOffset(years=1)
Out[68]: Timestamp('2017-10-02 16:23:30.166584')
Changes to Index Comparisons¶
Operator equal on Index
should behavior similarly to Series
(GH9947, GH10637)
Starting in v0.17.0, comparing Index
objects of different lengths will raise
a ValueError
. This is to be consistent with the behavior of Series
.
Previous Behavior:
In [2]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[2]: array([ True, False, False], dtype=bool)
In [3]: pd.Index([1, 2, 3]) == pd.Index([2])
Out[3]: array([False, True, False], dtype=bool)
In [4]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
Out[4]: False
New Behavior:
In [8]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[8]: array([ True, False, False], dtype=bool)
In [9]: pd.Index([1, 2, 3]) == pd.Index([2])
ValueError: Lengths must match to compare
In [10]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
ValueError: Lengths must match to compare
Note that this is different from the numpy
behavior where a comparison can
be broadcast:
In [69]: np.array([1, 2, 3]) == np.array([1])
Out[69]: array([ True, False, False], dtype=bool)
or it can return False if broadcasting can not be done:
In [70]: np.array([1, 2, 3]) == np.array([1, 2])
Out[70]: False
Changes to Boolean Comparisons vs. None¶
Boolean comparisons of a Series
vs None
will now be equivalent to comparing with np.nan
, rather than raise TypeError
. (GH1079).
In [71]: s = Series(range(3))
In [72]: s.iloc[1] = None
In [73]: s
Out[73]:
0 0.0
1 NaN
2 2.0
dtype: float64
Previous Behavior:
In [5]: s==None
TypeError: Could not compare <type 'NoneType'> type with Series
New Behavior:
In [74]: s==None
Out[74]:
0 False
1 False
2 False
dtype: bool
Usually you simply want to know which values are null.
In [75]: s.isnull()
Out[75]:
0 False
1 True
2 False
dtype: bool
Warning
You generally will want to use isnull/notnull
for these types of comparisons, as isnull/notnull
tells you which elements are null. One has to be
mindful that nan's
don’t compare equal, but None's
do. Note that Pandas/numpy uses the fact that np.nan != np.nan
, and treats None
like np.nan
.
In [76]: None == None
Out[76]: True
In [77]: np.nan == np.nan
Out[77]: False
HDFStore dropna behavior¶
The default behavior for HDFStore write functions with format='table'
is now to keep rows that are all missing. Previously, the behavior was to drop rows that were all missing save the index. The previous behavior can be replicated using the dropna=True
option. (GH9382)
Previous Behavior:
In [78]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
....: 'col2':[1, np.nan, np.nan]})
....:
In [79]: df_with_missing
Out[79]:
col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN
In [27]:
df_with_missing.to_hdf('file.h5',
'df_with_missing',
format='table',
mode='w')
In [28]: pd.read_hdf('file.h5', 'df_with_missing')
Out [28]:
col1 col2
0 0 1
2 2 NaN
New Behavior:
In [80]: df_with_missing.to_hdf('file.h5',
....: 'df_with_missing',
....: format='table',
....: mode='w')
....:
In [81]: pd.read_hdf('file.h5', 'df_with_missing')
Out[81]:
col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN
See the docs for more details.
Changes to display.precision
option¶
The display.precision
option has been clarified to refer to decimal places (GH10451).
Earlier versions of pandas would format floating point numbers to have one less decimal place than the value in
display.precision
.
In [1]: pd.set_option('display.precision', 2)
In [2]: pd.DataFrame({'x': [123.456789]})
Out[2]:
x
0 123.5
If interpreting precision as “significant figures” this did work for scientific notation but that same interpretation did not work for values with standard formatting. It was also out of step with how numpy handles formatting.
Going forward the value of display.precision
will directly control the number of places after the decimal, for
regular formatting as well as scientific notation, similar to how numpy’s precision
print option works.
In [82]: pd.set_option('display.precision', 2)
In [83]: pd.DataFrame({'x': [123.456789]})
Out[83]:
x
0 123.46
To preserve output behavior with prior versions the default value of display.precision
has been reduced to 6
from 7
.
Changes to Categorical.unique
¶
Categorical.unique
now returns new Categoricals
with categories
and codes
that are unique, rather than returning np.array
(GH10508)
- unordered category: values and categories are sorted by appearance order.
- ordered category: values are sorted by appearance order, categories keep existing order.
In [84]: cat = pd.Categorical(['C', 'A', 'B', 'C'],
....: categories=['A', 'B', 'C'],
....: ordered=True)
....:
In [85]: cat
Out[85]:
[C, A, B, C]
Categories (3, object): [A < B < C]
In [86]: cat.unique()
Out[86]:
[C, A, B]
Categories (3, object): [A < B < C]
In [87]: cat = pd.Categorical(['C', 'A', 'B', 'C'],
....: categories=['A', 'B', 'C'])
....:
In [88]: cat
Out[88]:
[C, A, B, C]
Categories (3, object): [A, B, C]
In [89]: cat.unique()
Out[89]:
[C, A, B]
Categories (3, object): [C, A, B]
Changes to bool
passed as header
in Parsers¶
In earlier versions of pandas, if a bool was passed the header
argument of
read_csv
, read_excel
, or read_html
it was implicitly converted to
an integer, resulting in header=0
for False
and header=1
for True
(GH6113)
A bool
input to header
will now raise a TypeError
In [29]: df = pd.read_csv('data.csv', header=False)
TypeError: Passing a bool to header is invalid. Use header=None for no header or
header=int or list-like of ints to specify the row(s) making up the column names
Other API Changes¶
Line and kde plot with
subplots=True
now uses default colors, not all black. Specifycolor='k'
to draw all lines in black (GH9894)Calling the
.value_counts()
method on a Series with acategorical
dtype now returns a Series with aCategoricalIndex
(GH10704)The metadata properties of subclasses of pandas objects will now be serialized (GH10553).
groupby
usingCategorical
follows the same rule asCategorical.unique
described above (GH10508)When constructing
DataFrame
with an array ofcomplex64
dtype previously meant the corresponding column was automatically promoted to thecomplex128
dtype. Pandas will now preserve the itemsize of the input for complex data (GH10952)some numeric reduction operators would return
ValueError
, rather thanTypeError
on object types that includes strings and numbers (GH11131)Passing currently unsupported
chunksize
argument toread_excel
orExcelFile.parse
will now raiseNotImplementedError
(GH8011)Allow an
ExcelFile
object to be passed intoread_excel
(GH11198)DatetimeIndex.union
does not inferfreq
ifself
and the input haveNone
asfreq
(GH11086)NaT
‘s methods now either raiseValueError
, or returnnp.nan
orNaT
(GH9513)Behavior Methods return np.nan
weekday
,isoweekday
return NaT
date
,now
,replace
,to_datetime
,today
return np.datetime64('NaT')
to_datetime64
(unchanged)raise ValueError
All other public methods (names not beginning with underscores)
Deprecations¶
For
Series
the following indexing functions are deprecated (GH10177).Deprecated Function Replacement .irow(i)
.iloc[i]
or.iat[i]
.iget(i)
.iloc[i]
or.iat[i]
.iget_value(i)
.iloc[i]
or.iat[i]
For
DataFrame
the following indexing functions are deprecated (GH10177).Deprecated Function Replacement .irow(i)
.iloc[i]
.iget_value(i, j)
.iloc[i, j]
or.iat[i, j]
.icol(j)
.iloc[:, j]
Note
These indexing function have been deprecated in the documentation since 0.11.0.
Categorical.name
was deprecated to makeCategorical
morenumpy.ndarray
like. UseSeries(cat, name="whatever")
instead (GH10482).- Setting missing values (NaN) in a
Categorical
‘scategories
will issue a warning (GH10748). You can still have missing values in thevalues
. drop_duplicates
andduplicated
‘stake_last
keyword was deprecated in favor ofkeep
. (GH6511, GH8505)Series.nsmallest
andnlargest
‘stake_last
keyword was deprecated in favor ofkeep
. (GH10792)DataFrame.combineAdd
andDataFrame.combineMult
are deprecated. They can easily be replaced by using theadd
andmul
methods:DataFrame.add(other, fill_value=0)
andDataFrame.mul(other, fill_value=1.)
(GH10735).TimeSeries
deprecated in favor ofSeries
(note that this has been an alias since 0.13.0), (GH10890)SparsePanel
deprecated and will be removed in a future version (GH11157).Series.is_time_series
deprecated in favor ofSeries.index.is_all_dates
(GH11135)- Legacy offsets (like
'A@JAN'
) are deprecated (note that this has been alias since 0.8.0) (GH10878) WidePanel
deprecated in favor ofPanel
,LongPanel
in favor ofDataFrame
(note these have been aliases since < 0.11.0), (GH10892)DataFrame.convert_objects
has been deprecated in favor of type-specific functionspd.to_datetime
,pd.to_timestamp
andpd.to_numeric
(new in 0.17.0) (GH11133).
Removal of prior version deprecations/changes¶
Removal of
na_last
parameters fromSeries.order()
andSeries.sort()
, in favor ofna_position
. (GH5231)Remove of
percentile_width
from.describe()
, in favor ofpercentiles
. (GH7088)Removal of
colSpace
parameter fromDataFrame.to_string()
, in favor ofcol_space
, circa 0.8.0 version.Removal of automatic time-series broadcasting (GH2304)
In [90]: np.random.seed(1234) In [91]: df = DataFrame(np.random.randn(5,2),columns=list('AB'),index=date_range('20130101',periods=5)) In [92]: df Out[92]: A B 2013-01-01 0.471435 -1.190976 2013-01-02 1.432707 -0.312652 2013-01-03 -0.720589 0.887163 2013-01-04 0.859588 -0.636524 2013-01-05 0.015696 -2.242685
Previously
In [3]: df + df.A FutureWarning: TimeSeries broadcasting along DataFrame index by default is deprecated. Please use DataFrame.<op> to explicitly broadcast arithmetic operations along the index Out[3]: A B 2013-01-01 0.942870 -0.719541 2013-01-02 2.865414 1.120055 2013-01-03 -1.441177 0.166574 2013-01-04 1.719177 0.223065 2013-01-05 0.031393 -2.226989
Current
In [93]: df.add(df.A,axis='index') Out[93]: A B 2013-01-01 0.942870 -0.719541 2013-01-02 2.865414 1.120055 2013-01-03 -1.441177 0.166574 2013-01-04 1.719177 0.223065 2013-01-05 0.031393 -2.226989
Remove
table
keyword inHDFStore.put/append
, in favor of usingformat=
(GH4645)Remove
kind
inread_excel/ExcelFile
as its unused (GH4712)Remove
infer_type
keyword frompd.read_html
as its unused (GH4770, GH7032)Remove
offset
andtimeRule
keywords fromSeries.tshift/shift
, in favor offreq
(GH4853, GH4864)Remove
pd.load/pd.save
aliases in favor ofpd.to_pickle/pd.read_pickle
(GH3787)
Performance Improvements¶
- Development support for benchmarking with the Air Speed Velocity library (GH8361)
- Added vbench benchmarks for alternative ExcelWriter engines and reading Excel files (GH7171)
- Performance improvements in
Categorical.value_counts
(GH10804) - Performance improvements in
SeriesGroupBy.nunique
andSeriesGroupBy.value_counts
andSeriesGroupby.transform
(GH10820, GH11077) - Performance improvements in
DataFrame.drop_duplicates
with integer dtypes (GH10917) - Performance improvements in
DataFrame.duplicated
with wide frames. (GH10161, GH11180) - 4x improvement in
timedelta
string parsing (GH6755, GH10426) - 8x improvement in
timedelta64
anddatetime64
ops (GH6755) - Significantly improved performance of indexing
MultiIndex
with slicers (GH10287) - 8x improvement in
iloc
using list-like input (GH10791) - Improved performance of
Series.isin
for datetimelike/integer Series (GH10287) - 20x improvement in
concat
of Categoricals when categories are identical (GH10587) - Improved performance of
to_datetime
when specified format string is ISO8601 (GH10178) - 2x improvement of
Series.value_counts
for float dtype (GH10821) - Enable
infer_datetime_format
into_datetime
when date components do not have 0 padding (GH11142) - Regression from 0.16.1 in constructing
DataFrame
from nested dictionary (GH11084) - Performance improvements in addition/subtraction operations for
DateOffset
withSeries
orDatetimeIndex
(GH10744, GH11205)
Bug Fixes¶
- Bug in incorrection computation of
.mean()
ontimedelta64[ns]
because of overflow (GH9442) - Bug in
.isin
on older numpies (:issue: 11232) - Bug in
DataFrame.to_html(index=False)
renders unnecessaryname
row (GH10344) - Bug in
DataFrame.to_latex()
thecolumn_format
argument could not be passed (GH9402) - Bug in
DatetimeIndex
when localizing withNaT
(GH10477) - Bug in
Series.dt
ops in preserving meta-data (GH10477) - Bug in preserving
NaT
when passed in an otherwise invalidto_datetime
construction (GH10477) - Bug in
DataFrame.apply
when function returns categorical series. (GH9573) - Bug in
to_datetime
with invalid dates and formats supplied (GH10154) - Bug in
Index.drop_duplicates
dropping name(s) (GH10115) - Bug in
Series.quantile
dropping name (GH10881) - Bug in
pd.Series
when setting a value on an emptySeries
whose index has a frequency. (GH10193) - Bug in
pd.Series.interpolate
with invalidorder
keyword values. (GH10633) - Bug in
DataFrame.plot
raisesValueError
when color name is specified by multiple characters (GH10387) - Bug in
Index
construction with a mixed list of tuples (GH10697) - Bug in
DataFrame.reset_index
when index containsNaT
. (GH10388) - Bug in
ExcelReader
when worksheet is empty (GH6403) - Bug in
BinGrouper.group_info
where returned values are not compatible with base class (GH10914) - Bug in clearing the cache on
DataFrame.pop
and a subsequent inplace op (GH10912) - Bug in indexing with a mixed-integer
Index
causing anImportError
(GH10610) - Bug in
Series.count
when index has nulls (GH10946) - Bug in pickling of a non-regular freq
DatetimeIndex
(GH11002) - Bug causing
DataFrame.where
to not respect theaxis
parameter when the frame has a symmetric shape. (GH9736) - Bug in
Table.select_column
where name is not preserved (GH10392) - Bug in
offsets.generate_range
wherestart
andend
have finer precision thanoffset
(GH9907) - Bug in
pd.rolling_*
whereSeries.name
would be lost in the output (GH10565) - Bug in
stack
when index or columns are not unique. (GH10417) - Bug in setting a
Panel
when an axis has a multi-index (GH10360) - Bug in
USFederalHolidayCalendar
whereUSMemorialDay
andUSMartinLutherKingJr
were incorrect (GH10278 and GH9760 ) - Bug in
.sample()
where returned object, if set, gives unnecessarySettingWithCopyWarning
(GH10738) - Bug in
.sample()
where weights passed asSeries
were not aligned along axis before being treated positionally, potentially causing problems if weight indices were not aligned with sampled object. (GH10738) - Regression fixed in (GH9311, GH6620, GH9345), where groupby with a datetime-like converting to float with certain aggregators (GH10979)
- Bug in
DataFrame.interpolate
withaxis=1
andinplace=True
(GH10395) - Bug in
io.sql.get_schema
when specifying multiple columns as primary key (GH10385). - Bug in
groupby(sort=False)
with datetime-likeCategorical
raisesValueError
(GH10505) - Bug in
groupby(axis=1)
withfilter()
throwsIndexError
(GH11041) - Bug in
test_categorical
on big-endian builds (GH10425) - Bug in
Series.shift
andDataFrame.shift
not supporting categorical data (GH9416) - Bug in
Series.map
using categoricalSeries
raisesAttributeError
(GH10324) - Bug in
MultiIndex.get_level_values
includingCategorical
raisesAttributeError
(GH10460) - Bug in
pd.get_dummies
withsparse=True
not returningSparseDataFrame
(GH10531) - Bug in
Index
subtypes (such asPeriodIndex
) not returning their own type for.drop
and.insert
methods (GH10620) - Bug in
algos.outer_join_indexer
whenright
array is empty (GH10618) - Bug in
filter
(regression from 0.16.0) andtransform
when grouping on multiple keys, one of which is datetime-like (GH10114) - Bug in
to_datetime
andto_timedelta
causingIndex
name to be lost (GH10875) - Bug in
len(DataFrame.groupby)
causingIndexError
when there’s a column containing only NaNs (:issue: 11016) - Bug that caused segfault when resampling an empty Series (GH10228)
- Bug in
DatetimeIndex
andPeriodIndex.value_counts
resets name from its result, but retains in result’sIndex
. (GH10150) - Bug in
pd.eval
usingnumexpr
engine coerces 1 element numpy array to scalar (GH10546) - Bug in
pd.concat
withaxis=0
when column is of dtypecategory
(GH10177) - Bug in
read_msgpack
where input type is not always checked (GH10369, GH10630) - Bug in
pd.read_csv
with kwargsindex_col=False
,index_col=['a', 'b']
ordtype
(GH10413, GH10467, GH10577) - Bug in
Series.from_csv
withheader
kwarg not setting theSeries.name
or theSeries.index.name
(GH10483) - Bug in
groupby.var
which caused variance to be inaccurate for small float values (GH10448) - Bug in
Series.plot(kind='hist')
Y Label not informative (GH10485) - Bug in
read_csv
when using a converter which generates auint8
type (GH9266) - Bug causes memory leak in time-series line and area plot (GH9003)
- Bug when setting a
Panel
sliced along the major or minor axes when the right-hand side is aDataFrame
(GH11014) - Bug that returns
None
and does not raiseNotImplementedError
when operator functions (e.g..add
) ofPanel
are not implemented (GH7692) - Bug in line and kde plot cannot accept multiple colors when
subplots=True
(GH9894) - Bug in
DataFrame.plot
raisesValueError
when color name is specified by multiple characters (GH10387) - Bug in left and right
align
ofSeries
withMultiIndex
may be inverted (GH10665) - Bug in left and right
join
of withMultiIndex
may be inverted (GH10741) - Bug in
read_stata
when reading a file with a different order set incolumns
(GH10757) - Bug in
Categorical
may not representing properly when category containstz
orPeriod
(GH10713) - Bug in
Categorical.__iter__
may not returning correctdatetime
andPeriod
(GH10713) - Bug in indexing with a
PeriodIndex
on an object with aPeriodIndex
(GH4125) - Bug in
read_csv
withengine='c'
: EOF preceded by a comment, blank line, etc. was not handled correctly (GH10728, GH10548) - Reading “famafrench” data via
DataReader
results in HTTP 404 error because of the website url is changed (GH10591). - Bug in
read_msgpack
where DataFrame to decode has duplicate column names (GH9618) - Bug in
io.common.get_filepath_or_buffer
which caused reading of valid S3 files to fail if the bucket also contained keys for which the user does not have read permission (GH10604) - Bug in vectorised setting of timestamp columns with python
datetime.date
and numpydatetime64
(GH10408, GH10412) - Bug in
Index.take
may add unnecessaryfreq
attribute (GH10791) - Bug in
merge
with emptyDataFrame
may raiseIndexError
(GH10824) - Bug in
to_latex
where unexpected keyword argument for some documented arguments (GH10888) - Bug in indexing of large
DataFrame
whereIndexError
is uncaught (GH10645 and GH10692) - Bug in
read_csv
when using thenrows
orchunksize
parameters if file contains only a header line (GH9535) - Bug in serialization of
category
types in HDF5 in presence of alternate encodings. (GH10366) - Bug in
pd.DataFrame
when constructing an empty DataFrame with a string dtype (GH9428) - Bug in
pd.DataFrame.diff
when DataFrame is not consolidated (GH10907) - Bug in
pd.unique
for arrays with thedatetime64
ortimedelta64
dtype that meant an array with object dtype was returned instead the original dtype (GH9431) - Bug in
Timedelta
raising error when slicing from 0s (GH10583) - Bug in
DatetimeIndex.take
andTimedeltaIndex.take
may not raiseIndexError
against invalid index (GH10295) - Bug in
Series([np.nan]).astype('M8[ms]')
, which now returnsSeries([pd.NaT])
(GH10747) - Bug in
PeriodIndex.order
reset freq (GH10295) - Bug in
date_range
whenfreq
dividesend
as nanos (GH10885) - Bug in
iloc
allowing memory outside bounds of a Series to be accessed with negative integers (GH10779) - Bug in
read_msgpack
where encoding is not respected (GH10581) - Bug preventing access to the first index when using
iloc
with a list containing the appropriate negative integer (GH10547, GH10779) - Bug in
TimedeltaIndex
formatter causing error while trying to saveDataFrame
withTimedeltaIndex
usingto_csv
(GH10833) - Bug in
DataFrame.where
when handling Series slicing (GH10218, GH9558) - Bug where
pd.read_gbq
throwsValueError
when Bigquery returns zero rows (GH10273) - Bug in
to_json
which was causing segmentation fault when serializing 0-rank ndarray (GH9576) - Bug in plotting functions may raise
IndexError
when plotted onGridSpec
(GH10819) - Bug in plot result may show unnecessary minor ticklabels (GH10657)
- Bug in
groupby
incorrect computation for aggregation onDataFrame
withNaT
(E.gfirst
,last
,min
). (GH10590, GH11010) - Bug when constructing
DataFrame
where passing a dictionary with only scalar values and specifying columns did not raise an error (GH10856) - Bug in
.var()
causing roundoff errors for highly similar values (GH10242) - Bug in
DataFrame.plot(subplots=True)
with duplicated columns outputs incorrect result (GH10962) - Bug in
Index
arithmetic may result in incorrect class (GH10638) - Bug in
date_range
results in empty if freq is negative annualy, quarterly and monthly (GH11018) - Bug in
DatetimeIndex
cannot infer negative freq (GH11018) - Remove use of some deprecated numpy comparison operations, mainly in tests. (GH10569)
- Bug in
Index
dtype may not applied properly (GH11017) - Bug in
io.gbq
when testing for minimum google api client version (GH10652) - Bug in
DataFrame
construction from nesteddict
withtimedelta
keys (GH11129) - Bug in
.fillna
against may raiseTypeError
when data contains datetime dtype (GH7095, GH11153) - Bug in
.groupby
when number of keys to group by is same as length of index (GH11185) - Bug in
convert_objects
where converted values might not be returned if all null andcoerce
(GH9589) - Bug in
convert_objects
wherecopy
keyword was not respected (GH9589)
v0.16.2 (June 12, 2015)¶
This is a minor bug-fix release from 0.16.1 and includes a a large number of
bug fixes along some new features (pipe()
method), enhancements, and performance improvements.
We recommend that all users upgrade to this version.
Highlights include:
What’s new in v0.16.2
New features¶
Pipe¶
We’ve introduced a new method DataFrame.pipe()
. As suggested by the name, pipe
should be used to pipe data through a chain of function calls.
The goal is to avoid confusing nested function calls like
# df is a DataFrame
# f, g, and h are functions that take and return DataFrames
f(g(h(df), arg1=1), arg2=2, arg3=3)
The logic flows from inside out, and function names are separated from their keyword arguments. This can be rewritten as
(df.pipe(h)
.pipe(g, arg1=1)
.pipe(f, arg2=2, arg3=3)
)
Now both the code and the logic flow from top to bottom. Keyword arguments are next to their functions. Overall the code is much more readable.
In the example above, the functions f
, g
, and h
each expected the DataFrame as the first positional argument.
When the function you wish to apply takes its data anywhere other than the first argument, pass a tuple
of (function, keyword)
indicating where the DataFrame should flow. For example:
In [1]: import statsmodels.formula.api as sm
In [2]: bb = pd.read_csv('data/baseball.csv', index_col='id')
# sm.poisson takes (formula, data)
In [3]: (bb.query('h > 0')
...: .assign(ln_h = lambda df: np.log(df.h))
...: .pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)')
...: .fit()
...: .summary()
...: )
...:
Optimization terminated successfully.
Current function value: 2.116284
Iterations 24
Out[3]:
<class 'statsmodels.iolib.summary.Summary'>
"""
Poisson Regression Results
==============================================================================
Dep. Variable: hr No. Observations: 68
Model: Poisson Df Residuals: 63
Method: MLE Df Model: 4
Date: Son, 02 Okt 2016 Pseudo R-squ.: 0.6878
Time: 16:23:30 Log-Likelihood: -143.91
converged: True LL-Null: -460.91
LLR p-value: 6.774e-136
===============================================================================
coef std err z P>|z| [95.0% Conf. Int.]
-------------------------------------------------------------------------------
Intercept -1267.3636 457.867 -2.768 0.006 -2164.767 -369.960
C(lg)[T.NL] -0.2057 0.101 -2.044 0.041 -0.403 -0.008
ln_h 0.9280 0.191 4.866 0.000 0.554 1.302
year 0.6301 0.228 2.762 0.006 0.183 1.077
g 0.0099 0.004 2.754 0.006 0.003 0.017
===============================================================================
"""
The pipe method is inspired by unix pipes, which stream text through
processes. More recently dplyr and magrittr have introduced the
popular (%>%)
pipe operator for R.
See the documentation for more. (GH10129)
Other Enhancements¶
Added rsplit to Index/Series StringMethods (GH10303)
Removed the hard-coded size limits on the
DataFrame
HTML representation in the IPython notebook, and leave this to IPython itself (only for IPython v3.0 or greater). This eliminates the duplicate scroll bars that appeared in the notebook with large frames (GH10231).Note that the notebook has a
toggle output scrolling
feature to limit the display of very large frames (by clicking left of the output). You can also configure the way DataFrames are displayed using the pandas options, see here here.axis
parameter ofDataFrame.quantile
now accepts alsoindex
andcolumn
. (GH9543)
API Changes¶
Holiday
now raisesNotImplementedError
if bothoffset
andobservance
are used in the constructor instead of returning an incorrect result (GH10217).
Performance Improvements¶
Bug Fixes¶
- Bug in
Series.hist
raises an error when a one rowSeries
was given (GH10214) - Bug where
HDFStore.select
modifies the passed columns list (GH7212) - Bug in
Categorical
repr withdisplay.width
ofNone
in Python 3 (GH10087) - Bug in
to_json
with certain orients and aCategoricalIndex
would segfault (GH10317) - Bug where some of the nan funcs do not have consistent return dtypes (GH10251)
- Bug in
DataFrame.quantile
on checking that a valid axis was passed (GH9543) - Bug in
groupby.apply
aggregation forCategorical
not preserving categories (GH10138) - Bug in
to_csv
wheredate_format
is ignored if thedatetime
is fractional (GH10209) - Bug in
DataFrame.to_json
with mixed data types (GH10289) - Bug in cache updating when consolidating (GH10264)
- Bug in
mean()
where integer dtypes can overflow (GH10172) - Bug where
Panel.from_dict
does not set dtype when specified (GH10058) - Bug in
Index.union
raisesAttributeError
when passing array-likes. (GH10149) - Bug in
Timestamp
‘s’microsecond
,quarter
,dayofyear
,week
anddaysinmonth
properties returnnp.int
type, not built-inint
. (GH10050) - Bug in
NaT
raisesAttributeError
when accessing todaysinmonth
,dayofweek
properties. (GH10096) - Bug in Index repr when using the
max_seq_items=None
setting (GH10182). - Bug in getting timezone data with
dateutil
on various platforms ( GH9059, GH8639, GH9663, GH10121) - Bug in displaying datetimes with mixed frequencies; display ‘ms’ datetimes to the proper precision. (GH10170)
- Bug in
setitem
where type promotion is applied to the entire block (GH10280) - Bug in
Series
arithmetic methods may incorrectly hold names (GH10068) - Bug in
GroupBy.get_group
when grouping on multiple keys, one of which is categorical. (GH10132) - Bug in
DatetimeIndex
andTimedeltaIndex
names are lost after timedelta arithmetics ( GH9926) - Bug in
DataFrame
construction from nesteddict
withdatetime64
(GH10160) - Bug in
Series
construction fromdict
withdatetime64
keys (GH9456) - Bug in
Series.plot(label="LABEL")
not correctly setting the label (GH10119) - Bug in
plot
not defaulting to matplotlibaxes.grid
setting (GH9792) - Bug causing strings containing an exponent, but no decimal to be parsed as
int
instead offloat
inengine='python'
for theread_csv
parser (GH9565) - Bug in
Series.align
resetsname
whenfill_value
is specified (GH10067) - Bug in
read_csv
causing index name not to be set on an empty DataFrame (GH10184) - Bug in
SparseSeries.abs
resetsname
(GH10241) - Bug in
TimedeltaIndex
slicing may reset freq (GH10292) - Bug in
GroupBy.get_group
raisesValueError
when group key containsNaT
(GH6992) - Bug in
SparseSeries
constructor ignores input data name (GH10258) - Bug in
Categorical.remove_categories
causing aValueError
when removing theNaN
category if underlying dtype is floating-point (GH10156) - Bug where infer_freq infers timerule (WOM-5XXX) unsupported by to_offset (GH9425)
- Bug in
DataFrame.to_hdf()
where table format would raise a seemingly unrelated error for invalid (non-string) column names. This is now explicitly forbidden. (GH9057) - Bug to handle masking empty
DataFrame
(GH10126). - Bug where MySQL interface could not handle numeric table/column names (GH10255)
- Bug in
read_csv
with adate_parser
that returned adatetime64
array of other time resolution than[ns]
(GH10245) - Bug in
Panel.apply
when the result has ndim=0 (GH10332) - Bug in
read_hdf
whereauto_close
could not be passed (GH9327). - Bug in
read_hdf
where open stores could not be used (GH10330). - Bug in adding empty
DataFrame``s, now results in a ``DataFrame
that.equals
an emptyDataFrame
(GH10181). - Bug in
to_hdf
andHDFStore
which did not check that complib choices were valid (GH4582, GH8874).
v0.16.1 (May 11, 2015)¶
This is a minor bug-fix release from 0.16.0 and includes a a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.
Highlights include:
- Support for a
CategoricalIndex
, a category based index, see here - New section on how-to-contribute to pandas, see here
- Revised “Merge, join, and concatenate” documentation, including graphical examples to make it easier to understand each operations, see here
- New method
sample
for drawing random samples from Series, DataFrames and Panels. See here - The default
Index
printing has changed to a more uniform format, see here BusinessHour
datetime-offset is now supported, see here- Further enhancement to the
.str
accessor to make string operations easier, see here
What’s new in v0.16.1
Warning
In pandas 0.17.0, the sub-package pandas.io.data
will be removed in favor of a separately installable package. See here for details (GH8961)
Enhancements¶
CategoricalIndex¶
We introduce a CategoricalIndex
, a new type of index object that is useful for supporting
indexing with duplicates. This is a container around a Categorical
(introduced in v0.15.0)
and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1,
setting the index of a DataFrame/Series
with a category
dtype would convert this to regular object-based Index
.
In [1]: df = DataFrame({'A' : np.arange(6),
...: 'B' : Series(list('aabbca')).astype('category',
...: categories=list('cab'))
...: })
...:
In [2]: df
Out[2]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a
In [3]: df.dtypes
Out[3]:
A int64
B category
dtype: object
In [4]: df.B.cat.categories
Out[4]: Index([u'c', u'a', u'b'], dtype='object')
setting the index, will create create a CategoricalIndex
In [5]: df2 = df.set_index('B')
In [6]: df2.index
Out[6]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')
indexing with __getitem__/.iloc/.loc/.ix
works similarly to an Index with duplicates.
The indexers MUST be in the category or the operation will raise.
In [7]: df2.loc['a']
Out[7]:
A
B
a 0
a 1
a 5
and preserves the CategoricalIndex
In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex([u'a', u'a', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')
sorting will order by the order of the categories
In [9]: df2.sort_index()
Out[9]:
A
B
c 4
a 0
a 1
a 5
b 2
b 3
groupby operations on the index will preserve the index nature as well
In [10]: df2.groupby(level=0).sum()
Out[10]:
A
B
c 4
a 6
b 5
In [11]: df2.groupby(level=0).sum().index
Out[11]: CategoricalIndex([u'c', u'a', u'b'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')
reindexing operations, will return a resulting index based on the type of the passed
indexer, meaning that passing a list will return a plain-old-Index
; indexing with
a Categorical
will return a CategoricalIndex
, indexed according to the categories
of the PASSED Categorical
dtype. This allows one to arbitrarly index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.
In [12]: df2.reindex(['a','e'])
Out[12]:
A
B
a 0.0
a 1.0
a 5.0
e NaN
In [13]: df2.reindex(['a','e']).index
Out[13]: Index([u'a', u'a', u'a', u'e'], dtype='object', name=u'B')
In [14]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
Out[14]:
A
B
a 0.0
a 1.0
a 5.0
e NaN
In [15]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
Out[15]: CategoricalIndex([u'a', u'a', u'a', u'e'], categories=[u'a', u'b', u'c', u'd', u'e'], ordered=False, name=u'B', dtype='category')
See the documentation for more. (GH7629, GH10038, GH10039)
Sample¶
Series, DataFrames, and Panels now have a new method: sample()
.
The method accepts a specific number of rows or columns to return, or a fraction of the
total number or rows or columns. It also has options for sampling with or without replacement,
for passing in a column for weights for non-uniform sampling, and for setting seed values to
facilitate replication. (GH2419)
In [16]: example_series = Series([0,1,2,3,4,5])
# When no arguments are passed, returns 1
In [17]: example_series.sample()
Out[17]:
3 3
dtype: int64
# One may specify either a number of rows:
In [18]: example_series.sample(n=3)
Out[18]:
5 5
1 1
4 4
dtype: int64
# Or a fraction of the rows:
In [19]: example_series.sample(frac=0.5)
Out[19]:
4 4
1 1
0 0
dtype: int64
# weights are accepted.
In [20]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [21]: example_series.sample(n=3, weights=example_weights)
Out[21]:
2 2
3 3
5 5
dtype: int64
# weights will also be normalized if they do not sum to one,
# and missing values will be treated as zeros.
In [22]: example_weights2 = [0.5, 0, 0, 0, None, np.nan]
In [23]: example_series.sample(n=1, weights=example_weights2)
Out[23]:
0 0
dtype: int64
When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from rows.
In [24]: df = DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [25]: df.sample(n=3, weights='weight_column')
Out[25]:
col1 weight_column
0 9 0.5
1 8 0.4
2 7 0.1
String Methods Enhancements¶
Continuing from v0.16.0, the following enhancements make string operations easier and more consistent with standard python string operations.
Added
StringMethods
(.str
accessor) toIndex
(GH9068)The
.str
accessor is now available for bothSeries
andIndex
.In [26]: idx = Index([' jack', 'jill ', ' jesse ', 'frank']) In [27]: idx.str.strip() Out[27]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')
One special case for the .str accessor on
Index
is that if a string method returnsbool
, the.str
accessor will return anp.array
instead of a booleanIndex
(GH8875). This enables the following expression to work naturally:In [28]: idx = Index(['a1', 'a2', 'b1', 'b2']) In [29]: s = Series(range(4), index=idx) In [30]: s Out[30]: a1 0 a2 1 b1 2 b2 3 dtype: int64 In [31]: idx.str.startswith('a') Out[31]: array([ True, True, False, False], dtype=bool) In [32]: s[s.index.str.startswith('a')] Out[32]: a1 0 a2 1 dtype: int64
The following new methods are accesible via
.str
accessor to apply the function to each values. (GH9766, GH9773, GH10031, GH10045, GH10052)Methods capitalize()
swapcase()
normalize()
partition()
rpartition()
index()
rindex()
translate()
split
now takesexpand
keyword to specify whether to expand dimensionality.return_type
is deprecated. (GH9847)In [33]: s = Series(['a,b', 'a,c', 'b,c']) # return Series In [34]: s.str.split(',') Out[34]: 0 [a, b] 1 [a, c] 2 [b, c] dtype: object # return DataFrame In [35]: s.str.split(',', expand=True) Out[35]: 0 1 0 a b 1 a c 2 b c In [36]: idx = Index(['a,b', 'a,c', 'b,c']) # return Index In [37]: idx.str.split(',') Out[37]: Index([[u'a', u'b'], [u'a', u'c'], [u'b', u'c']], dtype='object') # return MultiIndex In [38]: idx.str.split(',', expand=True) Out[38]: MultiIndex(levels=[[u'a', u'b'], [u'b', u'c']], labels=[[0, 0, 1], [0, 1, 1]])
Improved
extract
andget_dummies
methods forIndex.str
(GH9980)
Other Enhancements¶
BusinessHour
offset is now supported, which represents business hours starting from 09:00 - 17:00 onBusinessDay
by default. See Here for details. (GH7905)In [39]: from pandas.tseries.offsets import BusinessHour In [40]: Timestamp('2014-08-01 09:00') + BusinessHour() Out[40]: Timestamp('2014-08-01 10:00:00') In [41]: Timestamp('2014-08-01 07:00') + BusinessHour() Out[41]: Timestamp('2014-08-01 10:00:00') In [42]: Timestamp('2014-08-01 16:30') + BusinessHour() Out[42]: Timestamp('2014-08-04 09:30:00')
DataFrame.diff
now takes anaxis
parameter that determines the direction of differencing (GH9727)Allow
clip
,clip_lower
, andclip_upper
to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have anaxis
parameter which determines how the Series or DataFrame will be aligned with the threshold(s). (GH6966)DataFrame.mask()
andSeries.mask()
now support same keywords aswhere
(GH8801)drop
function can now accepterrors
keyword to suppressValueError
raised when any of label does not exist in the target data. (GH6736)In [43]: df = DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C']) In [44]: df.drop(['A', 'X'], axis=1, errors='ignore') Out[44]: B C 0 1.058969 -0.397840 1 1.047579 1.045938 2 -0.122092 0.124713
Add support for separating years and quarters using dashes, for example 2014-Q1. (GH9688)
Allow conversion of values with dtype
datetime64
ortimedelta64
to strings usingastype(str)
(GH9757)get_dummies
function now acceptssparse
keyword. If set toTrue
, the returnDataFrame
is sparse, e.g.SparseDataFrame
. (GH8823)Period
now acceptsdatetime64
as value input. (GH9054)Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00. (GH9570)
Allow
Panel.shift
withaxis='items'
(GH9890)Trying to write an excel file now raises
NotImplementedError
if theDataFrame
has aMultiIndex
instead of writing a broken Excel file. (GH9794)Allow
Categorical.add_categories
to acceptSeries
ornp.array
. (GH9927)Add/delete
str/dt/cat
accessors dynamically from__dir__
. (GH9910)Add
normalize
as adt
accessor method. (GH10047)DataFrame
andSeries
now have_constructor_expanddim
property as overridable constructor for one higher dimensionality data. This should be used only when it is really needed, see herepd.lib.infer_dtype
now returns'bytes'
in Python 3 where appropriate. (GH10032)
API changes¶
- When passing in an ax to
df.plot( ..., ax=ax)
, the sharex kwarg will now default to False. The result is that the visibility of xlabels and xticklabels will not anymore be changed. You have to do that by yourself for the right axes in your figure or setsharex=True
explicitly (but this changes the visible for all axes in the figure, not only the one which is passed in!). If pandas creates the subplots itself (e.g. no passed in ax kwarg), then the default is stillsharex=True
and the visibility changes are applied. assign()
now inserts new columns in alphabetical order. Previously the order was arbitrary. (GH9777)- By default,
read_csv
andread_table
will now try to infer the compression type based on the file extension. Setcompression=None
to restore the previous behavior (no decompression). (GH9770)
Index Representation¶
The string representation of Index
and its sub-classes have now been unified. These will show a single-line display if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items
; if lots of items (> display.max_seq_items
) will show a truncated display (the head and tail of the data). The formatting for MultiIndex
is unchanges (a multi-line wrapped display). The display width responds to the option display.max_seq_items
, which is defaulted to 100. (GH6482)
Previous Behavior
In [2]: pd.Index(range(4),name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')
In [3]: pd.Index(range(104),name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...], dtype='int64')
In [4]: pd.date_range('20130101',periods=4,name='foo',tz='US/Eastern')
Out[4]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern
In [5]: pd.date_range('20130101',periods=104,name='foo',tz='US/Eastern')
Out[5]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern
New Behavior
In [45]: pd.set_option('display.width', 80)
In [46]: pd.Index(range(4), name='foo')
Out[46]: Int64Index([0, 1, 2, 3], dtype='int64', name=u'foo')
In [47]: pd.Index(range(30), name='foo')
Out[47]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
dtype='int64', name=u'foo')
In [48]: pd.Index(range(104), name='foo')
Out[48]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
94, 95, 96, 97, 98, 99, 100, 101, 102, 103],
dtype='int64', name=u'foo', length=104)
In [49]: pd.CategoricalIndex(['a','bb','ccc','dddd'], ordered=True, name='foobar')
Out[49]: CategoricalIndex([u'a', u'bb', u'ccc', u'dddd'], categories=[u'a', u'bb', u'ccc', u'dddd'], ordered=True, name=u'foobar', dtype='category')
In [50]: pd.CategoricalIndex(['a','bb','ccc','dddd']*10, ordered=True, name='foobar')
Out[50]:
CategoricalIndex([u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd'],
categories=[u'a', u'bb', u'ccc', u'dddd'], ordered=True, name=u'foobar', dtype='category')
In [51]: pd.CategoricalIndex(['a','bb','ccc','dddd']*100, ordered=True, name='foobar')
Out[51]:
CategoricalIndex([u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb',
...
u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd', u'a', u'bb',
u'ccc', u'dddd'],
categories=[u'a', u'bb', u'ccc', u'dddd'], ordered=True, name=u'foobar', dtype='category', length=400)
In [52]: pd.date_range('20130101',periods=4, name='foo', tz='US/Eastern')
Out[52]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', name=u'foo', freq='D')
In [53]: pd.date_range('20130101',periods=25, freq='D')
Out[53]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06', '2013-01-07', '2013-01-08',
'2013-01-09', '2013-01-10', '2013-01-11', '2013-01-12',
'2013-01-13', '2013-01-14', '2013-01-15', '2013-01-16',
'2013-01-17', '2013-01-18', '2013-01-19', '2013-01-20',
'2013-01-21', '2013-01-22', '2013-01-23', '2013-01-24',
'2013-01-25'],
dtype='datetime64[ns]', freq='D')
In [54]: pd.date_range('20130101',periods=104, name='foo', tz='US/Eastern')
Out[54]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00',
'2013-01-05 00:00:00-05:00', '2013-01-06 00:00:00-05:00',
'2013-01-07 00:00:00-05:00', '2013-01-08 00:00:00-05:00',
'2013-01-09 00:00:00-05:00', '2013-01-10 00:00:00-05:00',
...
'2013-04-05 00:00:00-04:00', '2013-04-06 00:00:00-04:00',
'2013-04-07 00:00:00-04:00', '2013-04-08 00:00:00-04:00',
'2013-04-09 00:00:00-04:00', '2013-04-10 00:00:00-04:00',
'2013-04-11 00:00:00-04:00', '2013-04-12 00:00:00-04:00',
'2013-04-13 00:00:00-04:00', '2013-04-14 00:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', name=u'foo', length=104, freq='D')
Performance Improvements¶
Bug Fixes¶
- Bug where labels did not appear properly in the legend of
DataFrame.plot()
, passinglabel=
arguments works, and Series indices are no longer mutated. (GH9542) - Bug in json serialization causing a segfault when a frame had zero length. (GH9805)
- Bug in
read_csv
where missing trailing delimiters would cause segfault. (GH5664) - Bug in retaining index name on appending (GH9862)
- Bug in
scatter_matrix
draws unexpected axis ticklabels (GH5662) - Fixed bug in
StataWriter
resulting in changes to inputDataFrame
upon save (GH9795). - Bug in
transform
causing length mismatch when null entries were present and a fast aggregator was being used (GH9697) - Bug in
equals
causing false negatives when block order differed (GH9330) - Bug in grouping with multiple
pd.Grouper
where one is non-time based (GH10063) - Bug in
read_sql_table
error when reading postgres table with timezone (GH7139) - Bug in
DataFrame
slicing may not retain metadata (GH9776) - Bug where
TimdeltaIndex
were not properly serialized in fixedHDFStore
(GH9635) - Bug with
TimedeltaIndex
constructor ignoringname
when given anotherTimedeltaIndex
as data (GH10025). - Bug in
DataFrameFormatter._get_formatted_index
with not applyingmax_colwidth
to theDataFrame
index (GH7856) - Bug in
.loc
with a read-only ndarray data source (GH10043) - Bug in
groupby.apply()
that would raise if a passed user defined function either returned onlyNone
(for all input). (GH9685) - Always use temporary files in pytables tests (GH9992)
- Bug in plotting continuously using
secondary_y
may not show legend properly. (GH9610, GH9779) - Bug in
DataFrame.plot(kind="hist")
results inTypeError
whenDataFrame
contains non-numeric columns (GH9853) - Bug where repeated plotting of
DataFrame
with aDatetimeIndex
may raiseTypeError
(GH9852) - Bug in
setup.py
that would allow an incompat cython version to build (GH9827) - Bug in plotting
secondary_y
incorrectly attachesright_ax
property to secondary axes specifying itself recursively. (GH9861) - Bug in
Series.quantile
on empty Series of typeDatetime
orTimedelta
(GH9675) - Bug in
where
causing incorrect results when upcasting was required (GH9731) - Bug in
FloatArrayFormatter
where decision boundary for displaying “small” floats in decimal format is off by one order of magnitude for a given display.precision (GH9764) - Fixed bug where
DataFrame.plot()
raised an error when bothcolor
andstyle
keywords were passed and there was no color symbol in the style strings (GH9671) - Not showing a
DeprecationWarning
on combining list-likes with anIndex
(GH10083) - Bug in
read_csv
andread_table
when usingskip_rows
parameter if blank lines are present. (GH9832) - Bug in
read_csv()
interpretsindex_col=True
as1
(GH9798) - Bug in index equality comparisons using
==
failing on Index/MultiIndex type incompatibility (GH9785) - Bug in which
SparseDataFrame
could not take nan as a column name (GH8822) - Bug in
to_msgpack
andread_msgpack
zlib and blosc compression support (GH9783) - Bug
GroupBy.size
doesn’t attach index name properly if grouped byTimeGrouper
(GH9925) - Bug causing an exception in slice assignments because
length_of_indexer
returns wrong results (GH9995) - Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. (GH9710)
- Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. (GH10022)
- Bug causing elements with a null group to spill into the final group when grouping by a
Categorical
(GH9603) - Bug where .iloc and .loc behavior is not consistent on empty dataframes (GH9964)
- Bug in invalid attribute access on a
TimedeltaIndex
incorrectly raisedValueError
instead ofAttributeError
(GH9680) - Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g.
Series(Categorical(list("abc"), ordered=True)) > "d"
. This returnedFalse
for all elements, but now raises aTypeError
. Equality comparisons also now returnFalse
for==
andTrue
for!=
. (GH9848) - Bug in DataFrame
__setitem__
when right hand side is a dictionary (GH9874) - Bug in
where
when dtype isdatetime64/timedelta64
, but dtype of other is not (GH9804) - Bug in
MultiIndex.sortlevel()
results in unicode level name breaks (GH9856) - Bug in which
groupby.transform
incorrectly enforced output dtypes to match input dtypes. (GH9807) - Bug in
DataFrame
constructor whencolumns
parameter is set, anddata
is an empty list (GH9939) - Bug in bar plot with
log=True
raisesTypeError
if all values are less than 1 (GH9905) - Bug in horizontal bar plot ignores
log=True
(GH9905) - Bug in PyTables queries that did not return proper results using the index (GH8265, GH9676)
- Bug where dividing a dataframe containing values of type
Decimal
by anotherDecimal
would raise. (GH9787) - Bug where using DataFrames asfreq would remove the name of the index. (GH9885)
- Bug causing extra index point when resample BM/BQ (GH9756)
- Changed caching in
AbstractHolidayCalendar
to be at the instance level rather than at the class level as the latter can result in unexpected behaviour. (GH9552) - Fixed latex output for multi-indexed dataframes (GH9778)
- Bug causing an exception when setting an empty range using
DataFrame.loc
(GH9596) - Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes (GH9158)
- Bug in
transform
andfilter
when grouping on a categorical variable (GH9921) - Bug in
transform
when groups are equal in number and dtype to the input index (GH9700) - Google BigQuery connector now imports dependencies on a per-method basis.(GH9713)
- Updated BigQuery connector to no longer use deprecated
oauth2client.tools.run()
(GH8327) - Bug in subclassed
DataFrame
. It may not return the correct class, when slicing or subsetting it. (GH9632) - Bug in
.median()
where non-float null values are not handled correctly (GH10040) - Bug in Series.fillna() where it raises if a numerically convertible string is given (GH10092)
v0.16.0 (March 22, 2015)¶
This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
DataFrame.assign
method, see hereSeries.to_coo/from_coo
methods to interact withscipy.sparse
, see here- Backwards incompatible change to
Timedelta
to conform the.seconds
attribute withdatetime.timedelta
, see here - Changes to the
.loc
slicing API to conform with the behavior of.ix
see here - Changes to the default for ordering in the
Categorical
constructor, see here - Enhancement to the
.str
accessor to make string operations easier, see here - The
pandas.tools.rplot
,pandas.sandbox.qtpandas
andpandas.rpy
modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here
Check the API Changes and deprecations before updating.
What’s new in v0.16.0
New features¶
DataFrame Assign¶
Inspired by dplyr’s mutate
verb, DataFrame has a new
assign()
method.
The function signature for assign
is simply **kwargs
. The keys
are the column names for the new fields, and the values are either a value
to be inserted (for example, a Series
or NumPy array), or a function
of one argument to be called on the DataFrame
. The new values are inserted,
and the entire DataFrame (with all original and new columns) is returned.
In [1]: iris = read_csv('data/iris.data')
In [2]: iris.head()
Out[2]:
SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength']).head()
Out[3]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
Above was an example of inserting a precomputed value. We can also pass in a function to be evalutated.
In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
...: x['SepalLength'])).head()
...:
Out[4]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
The power of assign
comes when used in chains of operations. For example,
we can limit the DataFrame to just those with a Sepal Length greater than 5,
calculate the ratio, and plot
In [5]: (iris.query('SepalLength > 5')
...: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
...: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
...: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
...:
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3dbb896a90>
See the documentation for more. (GH9229)
Interaction with scipy.sparse¶
Added SparseSeries.to_coo()
and SparseSeries.from_coo()
methods (GH8048) for converting to and from scipy.sparse.coo_matrix
instances (see here). For example, given a SparseSeries with MultiIndex we can convert to a scipy.sparse.coo_matrix by specifying the row and column labels as index levels:
In [6]: from numpy import nan
In [7]: s = Series([3.0, nan, 1.0, 3.0, nan, nan])
In [8]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
...: (1, 2, 'a', 1),
...: (1, 1, 'b', 0),
...: (1, 1, 'b', 1),
...: (2, 1, 'b', 0),
...: (2, 1, 'b', 1)],
...: names=['A', 'B', 'C', 'D'])
...:
In [9]: s
Out[9]:
A B C D
1 2 a 0 3.0
1 NaN
1 b 0 1.0
1 3.0
2 1 b 0 NaN
1 NaN
dtype: float64
# SparseSeries
In [10]: ss = s.to_sparse()
In [11]: ss
Out[11]:
A B C D
1 2 a 0 3.0
1 NaN
1 b 0 1.0
1 3.0
2 1 b 0 NaN
1 NaN
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 2], dtype=int32)
In [12]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
....: column_levels=['C', 'D'],
....: sort_labels=False)
....:
In [13]: A
Out[13]:
<3x4 sparse matrix of type '<type 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
In [14]: A.todense()
Out[14]:
matrix([[ 3., 0., 0., 0.],
[ 0., 0., 1., 3.],
[ 0., 0., 0., 0.]])
In [15]: rows
Out[15]: [(1, 2), (1, 1), (2, 1)]
In [16]: columns
Out[16]: [('a', 0), ('a', 1), ('b', 0), ('b', 1)]
The from_coo method is a convenience method for creating a SparseSeries
from a scipy.sparse.coo_matrix
:
In [17]: from scipy import sparse
In [18]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
....: shape=(3, 4))
....:
In [19]: A
Out[19]:
<3x4 sparse matrix of type '<type 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
In [20]: A.todense()
Out[20]:
matrix([[ 0., 0., 1., 2.],
[ 3., 0., 0., 0.],
[ 0., 0., 0., 0.]])
In [21]: ss = SparseSeries.from_coo(A)
In [22]: ss
Out[22]:
0 2 1.0
3 2.0
1 0 3.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)
String Methods Enhancements¶
Following new methods are accesible via
.str
accessor to apply the function to each values. This is intended to make it more consistent with standard methods on strings. (GH9282, GH9352, GH9386, GH9387, GH9439)Methods isalnum()
isalpha()
isdigit()
isdigit()
isspace()
islower()
isupper()
istitle()
isnumeric()
isdecimal()
find()
rfind()
ljust()
rjust()
zfill()
In [23]: s = Series(['abcd', '3456', 'EFGH']) In [24]: s.str.isalpha() Out[24]: 0 True 1 False 2 True dtype: bool In [25]: s.str.find('ab') Out[25]: 0 0 1 -1 2 -1 dtype: int64
Series.str.pad()
andSeries.str.center()
now acceptfillchar
option to specify filling character (GH9352)In [26]: s = Series(['12', '300', '25']) In [27]: s.str.pad(5, fillchar='_') Out[27]: 0 ___12 1 __300 2 ___25 dtype: object
Added
Series.str.slice_replace()
, which previously raisedNotImplementedError
(GH8888)In [28]: s = Series(['ABCD', 'EFGH', 'IJK']) In [29]: s.str.slice_replace(1, 3, 'X') Out[29]: 0 AXD 1 EXH 2 IX dtype: object # replaced with empty char In [30]: s.str.slice_replace(0, 1) Out[30]: 0 BCD 1 FGH 2 JK dtype: object
Other enhancements¶
Reindex now supports
method='nearest'
for frames or series with a monotonic increasing or decreasing index (GH9258):In [31]: df = pd.DataFrame({'x': range(5)}) In [32]: df.reindex([0.2, 1.8, 3.5], method='nearest') Out[32]: x 0.2 0 1.8 2 3.5 4
This method is also exposed by the lower level
Index.get_indexer
andIndex.get_loc
methods.The
read_excel()
function’s sheetname argument now accepts a list andNone
, to get multiple or all sheets respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)# Returns the 1st and 4th sheet, as a dictionary of DataFrames. pd.read_excel('path_to_file.xls',sheetname=['Sheet1',3])
Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs here (GH9493:).
Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)
Added time interval selection in
get_data_yahoo
(GH9071)Added
Timestamp.to_datetime64()
to complementTimedelta.to_timedelta64()
(GH9255)tseries.frequencies.to_offset()
now acceptsTimedelta
as input (GH9064)Lag parameter was added to the autocorrelation method of
Series
, defaults to lag-1 autocorrelation (GH9192)Timedelta
will now acceptnanoseconds
keyword in constructor (GH9273)SQL code now safely escapes table and column names (GH8986)
Added auto-complete for
Series.str.<tab>
,Series.dt.<tab>
andSeries.cat.<tab>
(GH9322)Index.get_indexer
now supportsmethod='pad'
andmethod='backfill'
even for any target array, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic increasing indexes (GH9258).Index.asof
now works on all index types (GH9258).A
verbose
argument has been augmented inio.read_excel()
, defaults to False. Set to True to print sheet names as they are parsed. (GH9450)Added
days_in_month
(compatibility aliasdaysinmonth
) property toTimestamp
,DatetimeIndex
,Period
,PeriodIndex
, andSeries.dt
(GH9572)Added
decimal
option into_csv
to provide formatting for non-‘.’ decimal separators (GH781)Added
normalize
option forTimestamp
to normalized to midnight (GH8794)Added example for
DataFrame
import to R using HDF5 file andrhdf5
library. See the documentation for more (GH9636).
Backwards incompatible API changes¶
Changes in Timedelta¶
In v0.15.0 a new scalar type Timedelta
was introduced, that is a
sub-class of datetime.timedelta
. Mentioned here was a notice of an API change w.r.t. the .seconds
accessor. The intent was to provide a user-friendly set of accessors that give the ‘natural’ value for that unit, e.g. if you had a Timedelta('1 day, 10:11:12')
, then .seconds
would return 12. However, this is at odds with the definition of datetime.timedelta
, which defines .seconds
as 10 * 3600 + 11 * 60 + 12 == 36672
.
So in v0.16.0, we are restoring the API to match that of datetime.timedelta
. Further, the component values are still available through the .components
accessor. This affects the .seconds
and .microseconds
accessors, and removes the .hours
, .minutes
, .milliseconds
accessors. These changes affect TimedeltaIndex
and the Series .dt
accessor as well. (GH9185, GH9139)
Previous Behavior
In [2]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [3]: t.days
Out[3]: 1
In [4]: t.seconds
Out[4]: 12
In [5]: t.microseconds
Out[5]: 123
New Behavior
In [33]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [34]: t.days
Out[34]: 1
In [35]: t.seconds
Out[35]: 36672
In [36]: t.microseconds
Out[36]: 100123
Using .components
allows the full component access
In [37]: t.components
Out[37]: Components(days=1, hours=10, minutes=11, seconds=12, milliseconds=100, microseconds=123, nanoseconds=0)
In [38]: t.components.seconds
Out[38]: 12
Indexing Changes¶
The behavior of a small sub-set of edge cases for using .loc
have changed (GH8613). Furthermore we have improved the content of the error messages that are raised:
Slicing with
.loc
where the start and/or stop bound is not found in the index is now allowed; this previously would raise aKeyError
. This makes the behavior the same as.ix
in this case. This change is only for slicing, not when indexing with a single label.In [39]: df = DataFrame(np.random.randn(5,4), ....: columns=list('ABCD'), ....: index=date_range('20130101',periods=5)) ....: In [40]: df Out[40]: A B C D 2013-01-01 -0.322795 0.841675 2.390961 0.076200 2013-01-02 -0.566446 0.036142 -2.074978 0.247792 2013-01-03 -0.897157 -0.136795 0.018289 0.755414 2013-01-04 0.215269 0.841009 -1.445810 -1.401973 2013-01-05 -0.100918 -0.548242 -0.144620 0.354020 In [41]: s = Series(range(5),[-2,-1,1,2,3]) In [42]: s Out[42]: -2 0 -1 1 1 2 2 3 3 4 dtype: int64
Previous Behavior
In [4]: df.loc['2013-01-02':'2013-01-10'] KeyError: 'stop bound [2013-01-10] is not in the [index]' In [6]: s.loc[-10:3] KeyError: 'start bound [-10] is not the [index]'
New Behavior
In [43]: df.loc['2013-01-02':'2013-01-10'] Out[43]: A B C D 2013-01-02 -0.566446 0.036142 -2.074978 0.247792 2013-01-03 -0.897157 -0.136795 0.018289 0.755414 2013-01-04 0.215269 0.841009 -1.445810 -1.401973 2013-01-05 -0.100918 -0.548242 -0.144620 0.354020 In [44]: s.loc[-10:3] Out[44]: -2 0 -1 1 1 2 2 3 3 4 dtype: int64
Allow slicing with float-like values on an integer index for
.ix
. Previously this was only enabled for.loc
:Previous Behavior
In [8]: s.ix[-1.0:2] TypeError: the slice start value [-1.0] is not a proper indexer for this index type (Int64Index)
New Behavior
In [45]: s.ix[-1.0:2] Out[45]: -1 1 1 2 2 3 dtype: int64
Provide a useful exception for indexing with an invalid type for that index when using
.loc
. For example trying to use.loc
on an index of typeDatetimeIndex
orPeriodIndex
orTimedeltaIndex
, with an integer (or a float).Previous Behavior
In [4]: df.loc[2:3] KeyError: 'start bound [2] is not the [index]'
New Behavior
In [4]: df.loc[2:3] TypeError: Cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with <type 'int'> keys
Categorical Changes¶
In prior versions, Categoricals
that had an unspecified ordering (meaning no ordered
keyword was passed) were defaulted as ordered
Categoricals. Going forward, the ordered
keyword in the Categorical
constructor will default to False
. Ordering must now be explicit.
Furthermore, previously you could change the ordered
attribute of a Categorical by just setting the attribute, e.g. cat.ordered=True
; This is now deprecated and you should use cat.as_ordered()
or cat.as_unordered()
. These will by default return a new object and not modify the existing object. (GH9347, GH9190)
Previous Behavior
In [3]: s = Series([0,1,2], dtype='category')
In [4]: s
Out[4]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]
In [5]: s.cat.ordered
Out[5]: True
In [6]: s.cat.ordered = False
In [7]: s
Out[7]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]
New Behavior
In [46]: s = Series([0,1,2], dtype='category')
In [47]: s
Out[47]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]
In [48]: s.cat.ordered
Out[48]: False
In [49]: s = s.cat.as_ordered()
In [50]: s
Out[50]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]
In [51]: s.cat.ordered
Out[51]: True
# you can set in the constructor of the Categorical
In [52]: s = Series(Categorical([0,1,2],ordered=True))
In [53]: s
Out[53]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]
In [54]: s.cat.ordered
Out[54]: True
For ease of creation of series of categorical data, we have added the ability to pass keywords when calling .astype()
. These are passed directly to the constructor.
In [55]: s = Series(["a","b","c","a"]).astype('category',ordered=True)
In [56]: s
Out[56]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a < b < c]
In [57]: s = Series(["a","b","c","a"]).astype('category',categories=list('abcdef'),ordered=False)
In [58]: s
Out[58]:
0 a
1 b
2 c
3 a
dtype: category
Categories (6, object): [a, b, c, d, e, f]
Other API Changes¶
Index.duplicated
now returnsnp.array(dtype=bool)
rather thanIndex(dtype=object)
containingbool
values. (GH8875)DataFrame.to_json
now returns accurate type serialisation for each column for frames of mixed dtype (GH9037)Previously data was coerced to a common dtype before serialisation, which for example resulted in integers being serialised to floats:
In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json() Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1.0,"1":2.0}}'
Now each column is serialised using its correct dtype:
In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json() Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1,"1":2}}'
DatetimeIndex
,PeriodIndex
andTimedeltaIndex.summary
now output the same format. (GH9116)TimedeltaIndex.freqstr
now output the same string format asDatetimeIndex
. (GH9116)Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved with matplotlib’s
axhline
oraxvline
methods (GH9088).Series
accessors.dt
,.cat
and.str
now raiseAttributeError
instead ofTypeError
if the series does not contain the appropriate type of data (GH9617). This follows Python’s built-in exception hierarchy more closely and ensures that tests likehasattr(s, 'cat')
are consistent on both Python 2 and 3.Series
now supports bitwise operation for integral types (GH9016). Previously even if the input dtypes were integral, the output dtype was coerced tobool
.Previous Behavior
In [2]: pd.Series([0,1,2,3], list('abcd')) | pd.Series([4,4,4,4], list('abcd')) Out[2]: a True b True c True d True dtype: bool
New Behavior. If the input dtypes are integral, the output dtype is also integral and the output values are the result of the bitwise operation.
In [2]: pd.Series([0,1,2,3], list('abcd')) | pd.Series([4,4,4,4], list('abcd')) Out[2]: a 4 b 5 c 6 d 7 dtype: int64
During division involving a
Series
orDataFrame
,0/0
and0//0
now givenp.nan
instead ofnp.inf
. (GH9144, GH8445)Previous Behavior
In [2]: p = pd.Series([0, 1]) In [3]: p / 0 Out[3]: 0 inf 1 inf dtype: float64 In [4]: p // 0 Out[4]: 0 inf 1 inf dtype: float64
New Behavior
In [59]: p = pd.Series([0, 1]) In [60]: p / 0 Out[60]: 0 NaN 1 inf dtype: float64 In [61]: p // 0 Out[61]: 0 NaN 1 inf dtype: float64
Series.values_counts
andSeries.describe
for categorical data will now putNaN
entries at the end. (GH9443)Series.describe
for categorical data will now give counts and frequencies of 0, notNaN
, for unused categories (GH9443)Due to a bug fix, looking up a partial string label with
DatetimeIndex.asof
now includes values that match the string, even if they are after the start of the partial string label (GH9258).Old behavior:
In [4]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02') Out[4]: Timestamp('2000-01-31 00:00:00')
Fixed behavior:
In [62]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02') Out[62]: Timestamp('2000-02-28 00:00:00')
To reproduce the old behavior, simply add more precision to the label (e.g., use
2000-02-01
instead of2000-02
).
Deprecations¶
- The
rplot
trellis plotting interface is deprecated and will be removed in a future version. We refer to external packages like seaborn for similar but more refined functionality (GH3445). The documentation includes some examples how to convert your existing code usingrplot
to seaborn: rplot docs. - The
pandas.sandbox.qtpandas
interface is deprecated and will be removed in a future version. We refer users to the external package pandas-qt. (GH9615) - The
pandas.rpy
interface is deprecated and will be removed in a future version. Similar functionaility can be accessed thru the rpy2 project (GH9602) - Adding
DatetimeIndex/PeriodIndex
to anotherDatetimeIndex/PeriodIndex
is being deprecated as a set-operation. This will be changed to aTypeError
in a future version..union()
should be used for the union set operation. (GH9094) - Subtracting
DatetimeIndex/PeriodIndex
from anotherDatetimeIndex/PeriodIndex
is being deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding aTimeDeltaIndex
in a future version..difference()
should be used for the differencing set operation. (GH9094)
Removal of prior version deprecations/changes¶
DataFrame.pivot_table
andcrosstab
‘srows
andcols
keyword arguments were removed in favor ofindex
andcolumns
(GH6581)DataFrame.to_excel
andDataFrame.to_csv
cols
keyword argument was removed in favor ofcolumns
(GH6581)- Removed
convert_dummies
in favor ofget_dummies
(GH6581) - Removed
value_range
in favor ofdescribe
(GH6581)
Performance Improvements¶
- Fixed a performance regression for
.loc
indexing with an array or list-like (GH9126:). DataFrame.to_json
30x performance improvement for mixed dtype frames. (GH9037)- Performance improvements in
MultiIndex.duplicated
by working with labels instead of values (GH9125) - Improved the speed of
nunique
by callingunique
instead ofvalue_counts
(GH9129, GH7771) - Performance improvement of up to 10x in
DataFrame.count
andDataFrame.dropna
by taking advantage of homogeneous/heterogeneous dtypes appropriately (GH9136) - Performance improvement of up to 20x in
DataFrame.count
when using aMultiIndex
and thelevel
keyword argument (GH9163) - Performance and memory usage improvements in
merge
when key space exceedsint64
bounds (GH9151) - Performance improvements in multi-key
groupby
(GH9429) - Performance improvements in
MultiIndex.sortlevel
(GH9445) - Performance and memory usage improvements in
DataFrame.duplicated
(GH9398) - Cythonized
Period
(GH9440) - Decreased memory usage on
to_hdf
(GH9648)
Bug Fixes¶
- Changed
.to_html
to remove leading/trailing spaces in table body (GH4987) - Fixed issue using
read_csv
on s3 with Python 3 (GH9452) - Fixed compatibility issue in
DatetimeIndex
affecting architectures wherenumpy.int_
defaults tonumpy.int32
(GH8943) - Bug in Panel indexing with an object-like (GH9140)
- Bug in the returned
Series.dt.components
index was reset to the default index (GH9247) - Bug in
Categorical.__getitem__/__setitem__
with listlike input getting incorrect results from indexer coercion (GH9469) - Bug in partial setting with a DatetimeIndex (GH9478)
- Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be changed when the number was sufficiently large (GH9311, GH6620)
- Fixed bug in
to_sql
when mapping aTimestamp
object column (datetime column with timezone info) to the appropriate sqlalchemy type (GH9085). - Fixed bug in
to_sql
dtype
argument not accepting an instantiated SQLAlchemy type (GH9083). - Bug in
.loc
partial setting with anp.datetime64
(GH9516) - Incorrect dtypes inferred on datetimelike looking
Series
& on.xs
slices (GH9477) - Items in
Categorical.unique()
(ands.unique()
ifs
is of dtypecategory
) now appear in the order in which they are originally found, not in sorted order (GH9331). This is now consistent with the behavior for other dtypes in pandas. - Fixed bug on big endian platforms which produced incorrect results in
StataReader
(GH8688). - Bug in
MultiIndex.has_duplicates
when having many levels causes an indexer overflow (GH9075, GH5873) - Bug in
pivot
andunstack
wherenan
values would break index alignment (GH4862, GH7401, GH7403, GH7405, GH7466, GH9497) - Bug in left
join
on multi-index withsort=True
or null values (GH9210). - Bug in
MultiIndex
where inserting new keys would fail (GH9250). - Bug in
groupby
when key space exceedsint64
bounds (GH9096). - Bug in
unstack
withTimedeltaIndex
orDatetimeIndex
and nulls (GH9491). - Bug in
rank
where comparing floats with tolerance will cause inconsistent behaviour (GH8365). - Fixed character encoding bug in
read_stata
andStataReader
when loading data from a URL (GH9231). - Bug in adding
offsets.Nano
to other offets raisesTypeError
(GH9284) - Bug in
DatetimeIndex
iteration, related to (GH8890), fixed in (GH9100) - Bugs in
resample
around DST transitions. This required fixing offset classes so they behave correctly on DST transitions. (GH5172, GH8744, GH8653, GH9173, GH9468). - Bug in binary operator method (eg
.mul()
) alignment with integer levels (GH9463). - Bug in boxplot, scatter and hexbin plot may show an unnecessary warning (GH8877)
- Bug in subplot with
layout
kw may show unnecessary warning (GH9464) - Bug in using grouper functions that need passed thru arguments (e.g. axis), when using wrapped function (e.g.
fillna
), (GH9221) DataFrame
now properly supports simultaneouscopy
anddtype
arguments in constructor (GH9099)- Bug in
read_csv
when using skiprows on a file with CR line endings with the c engine. (GH9079) isnull
now detectsNaT
inPeriodIndex
(GH9129)- Bug in groupby
.nth()
with a multiple column groupby (GH8979) - Bug in
DataFrame.where
andSeries.where
coerce numerics to string incorrectly (GH9280) - Bug in
DataFrame.where
andSeries.where
raiseValueError
when string list-like is passed. (GH9280) - Accessing
Series.str
methods on with non-string values now raisesTypeError
instead of producing incorrect results (GH9184) - Bug in
DatetimeIndex.__contains__
when index has duplicates and is not monotonic increasing (GH9512) - Fixed division by zero error for
Series.kurt()
when all values are equal (GH9197) - Fixed issue in the
xlsxwriter
engine where it added a default ‘General’ format to cells if no other format wass applied. This prevented other row or column formatting being applied. (GH9167) - Fixes issue with
index_col=False
whenusecols
is also specified inread_csv
. (GH9082) - Bug where
wide_to_long
would modify the input stubnames list (GH9204) - Bug in
to_sql
not storing float64 values using double precision. (GH9009) SparseSeries
andSparsePanel
now accept zero argument constructors (same as their non-sparse counterparts) (GH9272).- Regression in merging
Categorical
andobject
dtypes (GH9426) - Bug in
read_csv
with buffer overflows with certain malformed input files (GH9205) - Bug in groupby MultiIndex with missing pair (GH9049, GH9344)
- Fixed bug in
Series.groupby
where grouping onMultiIndex
levels would ignore the sort argument (GH9444) - Fix bug in
DataFrame.Groupby
wheresort=False
is ignored in the case of Categorical columns. (GH8868) - Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError (GH9452)
- Bug in the Google BigQuery reader where the ‘jobComplete’ key may be present but False in the query results (GH8728)
- Bug in
Series.values_counts
with excludingNaN
for categorical typeSeries
withdropna=True
(GH9443) - Fixed mising numeric_only option for
DataFrame.std/var/sem
(GH9201) - Support constructing
Panel
orPanel4D
with scalar data (GH8285) Series
text representation disconnected from max_rows/max_columns (GH7508).
Series
number formatting inconsistent when truncated (GH8532).Previous Behavior
In [2]: pd.options.display.max_rows = 10 In [3]: s = pd.Series([1,1,1,1,1,1,1,1,1,1,0.9999,1,1]*10) In [4]: s Out[4]: 0 1 1 1 2 1 ... 127 0.9999 128 1.0000 129 1.0000 Length: 130, dtype: float64
New Behavior
0 1.0000 1 1.0000 2 1.0000 3 1.0000 4 1.0000 ... 125 1.0000 126 1.0000 127 0.9999 128 1.0000 129 1.0000 dtype: float64
A Spurious
SettingWithCopy
Warning was generated when setting a new item in a frame in some cases (GH8730)The following would previously report a
SettingWithCopy
Warning.In [1]: df1 = DataFrame({'x': Series(['a','b','c']), 'y': Series(['d','e','f'])}) In [2]: df2 = df1[['x']] In [3]: df2['y'] = ['g', 'h', 'i']
v0.15.2 (December 12, 2014)¶
This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs. We recommend that all users upgrade to this version.
API changes¶
Indexing in
MultiIndex
beyond lex-sort depth is now supported, though a lexically sorted index will have a better performance. (GH2646)In [1]: df = pd.DataFrame({'jim':[0, 0, 1, 1], ...: 'joe':['x', 'x', 'z', 'y'], ...: 'jolie':np.random.rand(4)}).set_index(['jim', 'joe']) ...: In [2]: df Out[2]: jolie jim joe 0 x 0.123943 x 0.119381 1 z 0.738523 y 0.587304 In [3]: df.index.lexsort_depth Out[3]: 1 # in prior versions this would raise a KeyError # will now show a PerformanceWarning In [4]: df.loc[(1, 'z')] Out[4]: jolie jim joe 1 z 0.738523 # lexically sorting In [5]: df2 = df.sortlevel() In [6]: df2 Out[6]: jolie jim joe 0 x 0.123943 x 0.119381 1 y 0.587304 z 0.738523 In [7]: df2.index.lexsort_depth Out[7]: 2 In [8]: df2.loc[(1,'z')] Out[8]: jolie jim joe 1 z 0.738523
Bug in unique of Series with
category
dtype, which returned all categories regardless whether they were “used” or not (see GH8559 for the discussion). Previous behaviour was to return all categories:In [3]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c']) In [4]: cat Out[4]: [a, b, a] Categories (3, object): [a < b < c] In [5]: cat.unique() Out[5]: array(['a', 'b', 'c'], dtype=object)
Now, only the categories that do effectively occur in the array are returned:
In [9]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c']) In [10]: cat.unique() Out[10]: [a, b] Categories (2, object): [a, b]
Series.all
andSeries.any
now support thelevel
andskipna
parameters.Series.all
,Series.any
,Index.all
, andIndex.any
no longer support theout
andkeepdims
parameters, which existed for compatibility with ndarray. Various index types no longer support theall
andany
aggregation functions and will now raiseTypeError
. (GH8302).Allow equality comparisons of Series with a categorical dtype and object dtype; previously these would raise
TypeError
(GH8938)Bug in
NDFrame
: conflicting attribute/column names now behave consistently between getting and setting. Previously, when both a column and attribute namedy
existed,data.y
would return the attribute, whiledata.y = z
would update the column (GH8994)In [11]: data = pd.DataFrame({'x':[1, 2, 3]}) In [12]: data.y = 2 In [13]: data['y'] = [2, 4, 6] In [14]: data Out[14]: x y 0 1 2 1 2 4 2 3 6 # this assignment was inconsistent In [15]: data.y = 5
Old behavior:
In [6]: data.y Out[6]: 2 In [7]: data['y'].values Out[7]: array([5, 5, 5])
New behavior:
In [16]: data.y Out[16]: 5 In [17]: data['y'].values Out[17]: array([2, 4, 6])
Timestamp('now')
is now equivalent toTimestamp.now()
in that it returns the local time rather than UTC. Also,Timestamp('today')
is now equivalent toTimestamp.today()
and both havetz
as a possible argument. (GH9000)Fix negative step support for label-based slices (GH8753)
Old behavior:
In [1]: s = pd.Series(np.arange(3), ['a', 'b', 'c']) Out[1]: a 0 b 1 c 2 dtype: int64 In [2]: s.loc['c':'a':-1] Out[2]: c 2 dtype: int64
New behavior:
In [18]: s = pd.Series(np.arange(3), ['a', 'b', 'c']) In [19]: s.loc['c':'a':-1] Out[19]: c 2 b 1 a 0 dtype: int64
Enhancements¶
Categorical
enhancements:
- Added ability to export Categorical data to Stata (GH8633). See here for limitations of categorical variables exported to Stata data files.
- Added flag
order_categoricals
toStataReader
andread_stata
to select whether to order imported categorical data (GH8836). See here for more information on importing categorical variables from Stata data files. - Added ability to export Categorical data to to/from HDF5 (GH7621). Queries work the same as if it was an object array. However, the
category
dtyped data is stored in a more efficient manner. See here for an example and caveats w.r.t. prior versions of pandas. - Added support for
searchsorted()
on Categorical class (GH8420).
Other enhancements:
Added the ability to specify the SQL type of columns when writing a DataFrame to a database (GH8778). For example, specifying to use the sqlalchemy
String
type instead of the defaultText
type for string columns:from sqlalchemy.types import String data.to_sql('data_dtype', engine, dtype={'Col_1': String})
Series.all
andSeries.any
now support thelevel
andskipna
parameters (GH8302):In [20]: s = pd.Series([False, True, False], index=[0, 0, 1]) In [21]: s.any(level=0) Out[21]: 0 True 1 False dtype: bool
Panel
now supports theall
andany
aggregation functions. (GH8302):In [22]: p = pd.Panel(np.random.rand(2, 5, 4) > 0.1) In [23]: p.all() Out[23]: 0 1 0 True True 1 True True 2 False False 3 True True
Added support for
utcfromtimestamp()
,fromtimestamp()
, andcombine()
on Timestamp class (GH5351).Added Google Analytics (pandas.io.ga) basic documentation (GH8835). See here.
Timedelta
arithmetic returnsNotImplemented
in unknown cases, allowing extensions by custom classes (GH8813).Timedelta
now supports arithemtic withnumpy.ndarray
objects of the appropriate dtype (numpy 1.8 or newer only) (GH8884).Added
Timedelta.to_timedelta64()
method to the public API (GH8884).Added
gbq.generate_bq_schema()
function to the gbq module (GH8325).Series
now works with map objects the same way as generators (GH8909).Added context manager to
HDFStore
for automatic closing (GH8791).to_datetime
gains anexact
keyword to allow for a format to not require an exact match for a provided format string (if itsFalse
).exact
defaults toTrue
(meaning that exact matching is still the default) (GH8904)Added
axvlines
boolean option to parallel_coordinates plot function, determines whether vertical lines will be printed, default is TrueAdded ability to read table footers to read_html (GH8552)
to_sql
now infers datatypes of non-NA values for columns that contain NA values and have dtypeobject
(GH8778).
Performance¶
Bug Fixes¶
- Bug in concat of Series with
category
dtype which were coercing toobject
. (GH8641) - Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones (GH8865)
- Made consistent a timezone mismatch exception (either tz operated with None or incompatible timezone), will now return
TypeError
rather thanValueError
(a couple of edge cases only), (GH8865) - Bug in using a
pd.Grouper(key=...)
with no level/axis or level only (GH8795, GH8866) - Report a
TypeError
when invalid/no parameters are passed in a groupby (GH8015) - Bug in packaging pandas with
py2app/cx_Freeze
(GH8602, GH8831) - Bug in
groupby
signatures that didn’t include *args or **kwargs (GH8733). io.data.Options
now raisesRemoteDataError
when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).- Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type (GH8833)
- Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781)
io.data.Options
now raisesRemoteDataError
when no expiry dates are available from Yahoo (GH8761).Timedelta
kwargs may now be numpy ints and floats (GH8757).- Fixed several outstanding bugs for
Timedelta
arithmetic and comparisons (GH8813, GH5963, GH5436). sql_schema
now generates dialect appropriateCREATE TABLE
statements (GH8697)slice
string method now takes step into account (GH8754)- Bug in
BlockManager
where setting values with different type would break block integrity (GH8850) - Bug in
DatetimeIndex
when usingtime
object as key (GH8667) - Bug in
merge
wherehow='left'
andsort=False
would not preserve left frame order (GH7331) - Bug in
MultiIndex.reindex
where reindexing at level would not reorder labels (GH4088) - Bug in certain operations with dateutil timezones, manifesting with dateutil 2.3 (GH8639)
- Regression in DatetimeIndex iteration with a Fixed/Local offset timezone (GH8890)
- Bug in
to_datetime
when parsing a nanoseconds using the%f
format (GH8989) io.data.Options
now raisesRemoteDataError
when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).- Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765)
- Fixed division by 0 when reading big csv files in python 3 (GH8621)
- Bug in outputing a Multindex with
to_html,index=False
which would add an extra column (GH8452) - Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836).
- Defined
.size
attribute acrossNDFrame
objects to provide compat with numpy >= 1.9.1; buggy withnp.array_split
(GH8846) - Skip testing of histogram plots for matplotlib <= 1.2 (GH8648).
- Bug where
get_data_google
returned object dtypes (GH3995) - Bug in
DataFrame.stack(..., dropna=False)
when the DataFrame’scolumns
is aMultiIndex
whoselabels
do not reference all itslevels
. (GH8844) - Bug in that Option context applied on
__enter__
(GH8514) - Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calculated from the start of the range (GH8683)
- Bug where
DataFrame.plot(kind='scatter')
fails when checking if an np.array is in the DataFrame (GH8852) - Bug in
pd.infer_freq/DataFrame.inferred_freq
that prevented proper sub-daily frequency inference when the index contained DST days (GH8772). - Bug where index name was still used when plotting a series with
use_index=False
(GH8558). - Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584).
- Bug in
MultiIndex
where__contains__
returns wrong result if index is not lexically sorted or unique (GH7724) - BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983)
- Regression in
Timestamp
does not parse ‘Z’ zone designator for UTC (GH8771) - Bug in StataWriter the produces writes strings with 244 characters irrespective of actual size (GH8969)
- Fixed ValueError raised by cummin/cummax when datetime64 Series contains NaT. (GH8965)
- Bug in Datareader returns object dtype if there are missing values (GH8980)
- Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964).
- Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice. (GH9011).
- Bug in plotting of a period-like array (GH9012)
v0.15.1 (November 9, 2014)¶
This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
API changes¶
s.dt.hour
and other.dt
accessors will now returnnp.nan
for missing values (rather than previously -1), (GH8689)In [1]: s = Series(date_range('20130101',periods=5,freq='D')) In [2]: s.iloc[2] = np.nan In [3]: s Out[3]: 0 2013-01-01 1 2013-01-02 2 NaT 3 2013-01-04 4 2013-01-05 dtype: datetime64[ns]
previous behavior:
In [6]: s.dt.hour Out[6]: 0 0 1 0 2 -1 3 0 4 0 dtype: int64
current behavior:
In [4]: s.dt.hour Out[4]: 0 0.0 1 0.0 2 NaN 3 0.0 4 0.0 dtype: float64
groupby
withas_index=False
will not add erroneous extra columns to result (GH8582):In [5]: np.random.seed(2718281) In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)), ...: columns=['jim', 'joe']) ...: In [7]: df.head() Out[7]: jim joe 0 61 81 1 96 49 2 55 65 3 72 51 4 77 12 In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))
previous behavior:
In [4]: df.groupby(ts, as_index=False).max() Out[4]: NaN jim joe 0 0 72 83 1 5 77 84 2 10 96 65
current behavior:
In [9]: df.groupby(ts, as_index=False).max() Out[9]: jim joe 0 72 83 1 77 84 2 96 65
groupby
will not erroneously exclude columns if the column name conflics with the grouper name (GH8112):In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)}) In [11]: df Out[11]: jim joe 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 In [12]: gr = df.groupby(df['jim'] < 2)
previous behavior (excludes 1st column from output):
In [4]: gr.apply(sum) Out[4]: joe jim False 24 True 11
current behavior:
In [13]: gr.apply(sum) Out[13]: jim joe jim False 9 24 True 1 11
Support for slicing with monotonic decreasing indexes, even if
start
orstop
is not found in the index (GH7860):In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1]) In [15]: s Out[15]: 4 a 3 b 2 c 1 d dtype: object
previous behavior:
In [8]: s.loc[3.5:1.5] KeyError: 3.5
current behavior:
In [16]: s.loc[3.5:1.5] Out[16]: 3 b 2 c dtype: object
io.data.Options
has been fixed for a change in the format of the Yahoo Options page (GH8612), (GH8741)Note
As a result of a change in Yahoo’s option page layout, when an expiry date is given,
Options
methods now return data for a single expiry date. Previously, methods returned all data for the selected month.The
month
andyear
parameters have been undeprecated and can be used to get all options data for a given month.If an expiry date that is not valid is given, data for the next expiry after the given date is returned.
Option data frames are now saved on the instance as
callsYYMMDD
orputsYYMMDD
. Previously they were saved ascallsMMYY
andputsMMYY
. The next expiry is saved ascalls
andputs
.New features:
- The expiry parameter can now be a single date or a list-like object containing dates.
- A new property
expiry_dates
was added, which returns all available expiry dates.
Current behavior:
In [17]: from pandas.io.data import Options In [18]: aapl = Options('aapl','yahoo') In [19]: aapl.get_call_data().iloc[0:5,0:1] Out[19]: Last Strike Expiry Type Symbol 80 2014-11-14 call AAPL141114C00080000 29.05 84 2014-11-14 call AAPL141114C00084000 24.80 85 2014-11-14 call AAPL141114C00085000 24.05 86 2014-11-14 call AAPL141114C00086000 22.76 87 2014-11-14 call AAPL141114C00087000 21.74 In [20]: aapl.expiry_dates Out[20]: [datetime.date(2014, 11, 14), datetime.date(2014, 11, 22), datetime.date(2014, 11, 28), datetime.date(2014, 12, 5), datetime.date(2014, 12, 12), datetime.date(2014, 12, 20), datetime.date(2015, 1, 17), datetime.date(2015, 2, 20), datetime.date(2015, 4, 17), datetime.date(2015, 7, 17), datetime.date(2016, 1, 15), datetime.date(2017, 1, 20)] In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1] Out[21]: Last Strike Expiry Type Symbol 109 2014-11-22 call AAPL141122C00109000 1.48 2014-11-28 call AAPL141128C00109000 1.79 110 2014-11-14 call AAPL141114C00110000 0.55 2014-11-22 call AAPL141122C00110000 1.02 2014-11-28 call AAPL141128C00110000 1.32
- pandas now also registers the
datetime64
dtype in matplotlib’s units registry to plot such values as datetimes. This is activated once pandas is imported. In previous versions, plotting an array ofdatetime64
values will have resulted in plotted integer values. To keep the previous behaviour, you can dodel matplotlib.units.registry[np.datetime64]
(GH8614).
Enhancements¶
concat
permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):In [17]: from collections import deque In [18]: df1 = pd.DataFrame([1, 2, 3]) In [19]: df2 = pd.DataFrame([4, 5, 6])
previous behavior:
In [7]: pd.concat(deque((df1, df2))) TypeError: first argument must be a list-like of pandas objects, you passed an object of type "deque"
current behavior:
In [20]: pd.concat(deque((df1, df2))) Out[20]: 0 0 1 1 2 2 3 0 4 1 5 2 6
Represent
MultiIndex
labels with a dtype that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported memory usage was incorrect as it didn’t show the usage for the memory occupied by the underling data array. (GH8456)In [21]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([['a'],range(1000)]),columns=['A'])
previous behavior:
# this was underreported in prior versions In [1]: dfi.memory_usage(index=True) Out[1]: Index 8000 # took about 24008 bytes in < 0.15.1 A 8000 dtype: int64
current behavior:
In [22]: dfi.memory_usage(index=True) Out[22]: Index 11040 A 8000 dtype: int64
Added Index properties is_monotonic_increasing and is_monotonic_decreasing (GH8680).
Added option to select columns when importing Stata files (GH7935)
Qualify memory usage in
DataFrame.info()
by adding+
if it is a lower bound (GH8578)Raise errors in certain aggregation cases where an argument such as
numeric_only
is not handled (GH8592).Added support for 3-character ISO and non-standard country codes in
io.wb.download()
(GH8482)World Bank data requests now will warn/raise based on an
errors
argument, as well as a list of hard-coded country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad countries will raise exceptions because some edge cases break the entire response. (GH8482)Added option to
Series.str.split()
to return aDataFrame
rather than aSeries
(GH8428)Added option to
df.info(null_counts=None|True|False)
to override the default display options and force showing of the null-counts (GH8701)
Bug Fixes¶
- Bug in unpickling of a
CustomBusinessDay
object (GH8591) - Bug in coercing
Categorical
to a records array, e.g.df.to_records()
(GH8626) - Bug in
Categorical
not created properly withSeries.to_frame()
(GH8626) - Bug in coercing in astype of a
Categorical
of a passedpd.Categorical
(this now raisesTypeError
correctly), (GH8626) - Bug in
cut
/qcut
when usingSeries
andretbins=True
(GH8589) - Bug in writing Categorical columns to an SQL database with
to_sql
(GH8624). - Bug in comparing
Categorical
of datetime raising when being compared to a scalar datetime (GH8687) - Bug in selecting from a
Categorical
with.iloc
(GH8623) - Bug in groupby-transform with a Categorical (GH8623)
- Bug in duplicated/drop_duplicates with a Categorical (GH8623)
- Bug in
Categorical
reflected comparison operator raising if the first argument was a numpy array scalar (e.g. np.int64) (GH8658) - Bug in Panel indexing with a list-like (GH8710)
- Compat issue is
DataFrame.dtypes
whenoptions.mode.use_inf_as_null
is True (GH8722) - Bug in
read_csv
,dialect
parameter would not take a string (:issue: 8703) - Bug in slicing a multi-index level with an empty-list (GH8737)
- Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)
- Bug in setitem with empty indexer and unwanted coercion of dtypes (GH8669)
- Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (GH8607)
- Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes (GH8680).
- Bug when indexing a Float64Index with
np.nan
on numpy 1.7 (GH8980). - Fix
shape
attribute forMultiIndex
(GH8609) - Bug in
GroupBy
where a name conflict between the grouper and columns would breakgroupby
operations (GH7115, GH8112) - Fixed a bug where plotting a column
y
and specifying a label would mutate the index name of the original DataFrame (GH8494) - Fix regression in plotting of a DatetimeIndex directly with matplotlib (GH8614).
- Bug in
date_range
where partially-specified dates would incorporate current date (GH6961) - Bug in Setting by indexer to a scalar value with a mixed-dtype Panel4d was failing (GH8702)
- Bug where
DataReader
‘s would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (GH8494) - Bug in
get_quote_yahoo
that wouldn’t allow non-float return values (GH5229).
v0.15.0 (October 18, 2014)¶
This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Warning
pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)
- Highlights include:
- The
Categorical
type was integrated as a first-class pandas type, see here - New scalar type
Timedelta
, and a new index typeTimedeltaIndex
, see here - New datetimelike properties accessor
.dt
for Series, see Datetimelike Properties - New DataFrame default display for
df.info()
to include memory usage, see Memory Usage read_csv
will now by default ignore blank lines when parsing, see here- API change in using Indexes in set operations, see here
- Enhancements in the handling of timezones, see here
- A lot of improvements to the rolling and expanding moment funtions, see here
- Internal refactoring of the
Index
class to no longer sub-classndarray
, see Internal Refactoring - dropping support for
PyTables
less than version 3.0.0, andnumexpr
less than version 2.1 (GH7990) - Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
- Split out string methods documentation into Working with Text Data
- The
- Check the API Changes and deprecations before updating
- Other Enhancements
- Performance Improvements
- Bug Fixes
Warning
In 0.15.0 Index
has internally been refactored to no longer sub-class ndarray
but instead subclass PandasObject
, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (See the Internal Refactoring)
Warning
The refactorings in Categorical
changed the two argument constructor from
“codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use
Categorical
directly, please audit your code before updating to this pandas
version and change it to use the from_codes()
constructor. See more on Categorical
here
New features¶
Categoricals in Series/DataFrame¶
Categorical
can now be included in Series and DataFrames and gained new
methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (GH3943, GH5313, GH5314,
GH7444, GH7839, GH7848, GH7864, GH7914, GH7768, GH8006, GH3678,
GH8075, GH8076, GH8143, GH8453, GH8518).
For full docs, see the categorical introduction and the API documentation.
In [1]: df = DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
In [2]: df["grade"] = df["raw_grade"].astype("category")
In [3]: df["grade"]
Out[3]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
# Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]
# Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [6]: df["grade"]
Out[6]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
In [7]: df.sort("grade")
Out[7]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
In [8]: df.groupby("grade").size()
Out[8]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
pandas.core.group_agg
andpandas.core.factor_agg
were removed. As an alternative, construct a dataframe and usedf.groupby(<group>).agg(<func>)
.- Supplying “codes/labels and levels” to the
Categorical
constructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use thefrom_codes()
constructor. - The
Categorical.labels
attribute was renamed toCategorical.codes
and is read only. If you want to manipulate codes, please use one of the API methods on Categoricals. - The
Categorical.levels
attribute is renamed toCategorical.categories
.
TimedeltaIndex/Scalar¶
We introduce a new scalar type Timedelta
, which is a subclass of datetime.timedelta
, and behaves in a similar manner,
but allows compatibility with np.timedelta64
types as well as a host of custom representation, parsing, and attributes.
This type is very similar to how Timestamp
works for datetimes
. It is a nice-API box for the type. See the docs.
(GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)
Warning
Timedelta
scalars (and TimedeltaIndex
) component fields are not the same as the component fields on a datetime.timedelta
object. For example, .seconds
on a datetime.timedelta
object returns the total number of seconds combined between hours
, minutes
and seconds
. In contrast, the pandas Timedelta
breaks out hours, minutes, microseconds and nanoseconds separately.
# Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')
In [10]: tds.minutes
Out[10]: 5L
In [11]: tds.seconds
Out[11]: 3L
# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303
Note: this is no longer true starting from v0.16.0, where full
compatibility with datetime.timedelta
is introduced. See the
0.16.0 whatsnew entry
Warning
Prior to 0.15.0 pd.to_timedelta
would return a Series
for list-like/Series input, and a np.timedelta64
for scalar input.
It will now return a TimedeltaIndex
for list-like input, Series
for Series input, and Timedelta
for scalar input.
The arguments to pd.to_timedelta
are now (arg,unit='ns',box=True,coerce=False)
, previously were (arg,box=True,unit='ns')
as these are more logical.
Consruct a scalar
In [9]: Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')
In [10]: Timedelta('15.5us')
Out[10]: Timedelta('0 days 00:00:00.000015')
In [11]: Timedelta('1 hour 15.5us')
Out[11]: Timedelta('0 days 01:00:00.000015')
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [12]: Timedelta('-1us')
Out[12]: Timedelta('-1 days +23:59:59.999999')
# a NaT
In [13]: Timedelta('nan')
Out[13]: NaT
Access fields for a Timedelta
In [14]: td = Timedelta('1 hour 3m 15.5us')
In [15]: td.seconds
Out[15]: 3780
In [16]: td.microseconds
Out[16]: 15
In [17]: td.nanoseconds
Out[17]: 500
Construct a TimedeltaIndex
In [18]: TimedeltaIndex(['1 days','1 days, 00:00:05',
....: np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
....:
Out[18]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
'2 days 00:00:02'],
dtype='timedelta64[ns]', freq=None)
Constructing a TimedeltaIndex
with a regular range
In [19]: timedelta_range('1 days',periods=5,freq='D')
Out[19]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')
In [20]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[20]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],
dtype='timedelta64[ns]', freq='30T')
You can now use a TimedeltaIndex
as the index of a pandas object
In [21]: s = Series(np.arange(5),
....: index=timedelta_range('1 days',periods=5,freq='s'))
....:
In [22]: s
Out[22]:
1 days 00:00:00 0
1 days 00:00:01 1
1 days 00:00:02 2
1 days 00:00:03 3
1 days 00:00:04 4
Freq: S, dtype: int64
You can select with partial string selections
In [23]: s['1 day 00:00:02']
Out[23]: 2
In [24]: s['1 day':'1 day 00:00:02']
Out[24]:
1 days 00:00:00 0
1 days 00:00:01 1
1 days 00:00:02 2
Freq: S, dtype: int64
Finally, the combination of TimedeltaIndex
with DatetimeIndex
allow certain combination operations that are NaT
preserving:
In [25]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])
In [26]: tdi.tolist()
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [27]: dti = date_range('20130101',periods=3)
In [28]: dti.tolist()
Out[28]:
[Timestamp('2013-01-01 00:00:00', freq='D'),
Timestamp('2013-01-02 00:00:00', freq='D'),
Timestamp('2013-01-03 00:00:00', freq='D')]
In [29]: (dti + tdi).tolist()
Out[29]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [30]: (dti - tdi).tolist()
Out[30]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]
- iteration of a
Series
e.g.list(Series(...))
oftimedelta64[ns]
would prior to v0.15.0 returnnp.timedelta64
for each element. These will now be wrapped inTimedelta
.
Memory Usage¶
Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).
A new display option display.memory_usage
(see Options and Settings) sets the default behavior of the memory_usage
argument in the df.info()
method. By default display.memory_usage
is True
.
In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
....: 'complex128', 'object', 'bool']
....:
In [32]: n = 5000
In [33]: data = dict([ (t, np.random.randint(100, size=n).astype(t))
....: for t in dtypes])
....:
In [34]: df = DataFrame(data)
In [35]: df['categorical'] = df['object'].astype('category')
In [36]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 284.1+ KB
Additionally memory_usage()
is an available method for a dataframe object which returns the memory usage of each column.
In [37]: df.memory_usage(index=True)
Out[37]:
Index 72
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 5800
dtype: int64
.dt accessor¶
Series
has gained an accessor to succinctly return datetime like properties for the values of the Series, if its a datetime/period like Series. (GH7207)
This will return a Series, indexed like the existing Series. See the docs
# datetime
In [38]: s = Series(date_range('20130101 09:10:12',periods=4))
In [39]: s
Out[39]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]
In [40]: s.dt.hour
Out[40]:
0 9
1 9
2 9
3 9
dtype: int64
In [41]: s.dt.second
Out[41]:
0 12
1 12
2 12
3 12
dtype: int64
In [42]: s.dt.day
Out[42]:
0 1
1 2
2 3
3 4
dtype: int64
In [43]: s.dt.freq
Out[43]: <Day>
This enables nice expressions like this:
In [44]: s[s.dt.day==2]
Out[44]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
You can easily produce tz aware transformations:
In [45]: stz = s.dt.tz_localize('US/Eastern')
In [46]: stz
Out[46]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]
In [47]: stz.dt.tz
Out[47]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>
You can also chain these types of operations:
In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[48]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
The .dt
accessor works for period and timedelta dtypes.
# period
In [49]: s = Series(period_range('20130101',periods=4,freq='D'))
In [50]: s
Out[50]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object
In [51]: s.dt.year
Out[51]:
0 2013
1 2013
2 2013
3 2013
dtype: int64
In [52]: s.dt.day
Out[52]:
0 1
1 2
2 3
3 4
dtype: int64
# timedelta
In [53]: s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s'))
In [54]: s
Out[54]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]
In [55]: s.dt.days
Out[55]:
0 1
1 1
2 1
3 1
dtype: int64
In [56]: s.dt.seconds
Out[56]:
0 5
1 6
2 7
3 8
dtype: int64
In [57]: s.dt.components
Out[57]:
days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0
Timezone handling improvements¶
tz_localize(None)
for tz-awareTimestamp
andDatetimeIndex
now removes timezone holding local time, previously this resulted inException
orTypeError
(GH7812)In [58]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern') In [59]: ts Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern') In [60]: ts.tz_localize(None) Out[60]: Timestamp('2014-08-01 09:00:00') In [61]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern') In [62]: didx Out[62]: DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00', '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00', '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00', '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00', '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq='H') In [63]: didx.tz_localize(None) Out[63]: DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00', '2014-08-01 11:00:00', '2014-08-01 12:00:00', '2014-08-01 13:00:00', '2014-08-01 14:00:00', '2014-08-01 15:00:00', '2014-08-01 16:00:00', '2014-08-01 17:00:00', '2014-08-01 18:00:00'], dtype='datetime64[ns]', freq='H')
tz_localize
now accepts theambiguous
keyword which allows for passing an array of bools indicating whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-DST, and ‘raise’ (default) for anAmbiguousTimeError
to be raised. See the docs for more details (GH7943)DataFrame.tz_localize
andDataFrame.tz_convert
now accepts an optionallevel
argument for localizing a specific level of a MultiIndex (GH7846)Timestamp.tz_localize
andTimestamp.tz_convert
now raiseTypeError
in error cases, rather thanException
(GH8025)a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive
datetime64[ns]
) asobject
dtype (GH8411)Timestamp.__repr__
displaysdateutil.tz.tzoffset
info (GH7907)
Rolling/Expanding Moments improvements¶
rolling_min()
,rolling_max()
,rolling_cov()
, androlling_corr()
now return objects with allNaN
whenlen(arg) < min_periods <= window
rather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)Prior to 0.15.0
In [64]: s = Series([10, 11, 12, 13])
In [15]: rolling_min(s, window=10, min_periods=5) ValueError: min_periods (5) must be <= window (4)
New behavior
In [4]: pd.rolling_min(s, window=10, min_periods=5) Out[4]: 0 NaN 1 NaN 2 NaN 3 NaN dtype: float64
rolling_max()
,rolling_min()
,rolling_sum()
,rolling_mean()
,rolling_median()
,rolling_std()
,rolling_var()
,rolling_skew()
,rolling_kurt()
,rolling_quantile()
,rolling_cov()
,rolling_corr()
,rolling_corr_pairwise()
,rolling_window()
, androlling_apply()
withcenter=True
previously would return a result of the same structure as the inputarg
withNaN
in the final(window-1)/2
entries.Now the final
(window-1)/2
entries of the result are calculated as if the inputarg
were followed by(window-1)/2
NaN
values (or with shrinking windows, in the case ofrolling_apply()
). (GH7925, GH8269)Prior behavior (note final value is
NaN
):In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True) Out[7]: 0 1 1 3 2 6 3 NaN dtype: float64
New behavior (note final value is
5 = sum([2, 3, NaN])
):In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True) Out[7]: 0 1 1 3 2 6 3 5 dtype: float64
rolling_window()
now normalizes the weights properly in rolling mean mode (mean=True) so that the calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)In [65]: s = Series([10.5, 8.8, 11.4, 9.7, 9.3])
Behavior prior to 0.15.0:
In [39]: rolling_window(s, window=3, win_type='triang', center=True) Out[39]: 0 NaN 1 6.583333 2 6.883333 3 6.683333 4 NaN dtype: float64
New behavior
In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True) Out[10]: 0 NaN 1 9.875 2 10.325 3 10.025 4 NaN dtype: float64
Removed
center
argument from allexpanding_
functions (see list), as the results produced whencenter=True
did not make much sense. (GH7925)Added optional
ddof
argument toexpanding_cov()
androlling_cov()
. The default value of1
is backwards-compatible. (GH8279)Documented the
ddof
argument toexpanding_var()
,expanding_std()
,rolling_var()
, androlling_std()
. These functions’ support of addof
argument (with a default value of1
) was previously undocumented. (GH8064)ewma()
,ewmstd()
,ewmvol()
,ewmvar()
,ewmcov()
, andewmcorr()
now interpretmin_periods
in the same manner that therolling_*()
andexpanding_*()
functions do: a given result entry will beNaN
if the (expanding, in this case) window does not contain at leastmin_periods
values. The previous behavior was to set toNaN
themin_periods
entries starting with the first non-NaN
value. (GH7977)Prior behavior (note values start at index
2
, which ismin_periods
after index0
(the index of the first non-empty value)):In [66]: s = Series([1, None, None, None, 2, 3])
In [51]: ewma(s, com=3., min_periods=2) Out[51]: 0 NaN 1 NaN 2 1.000000 3 1.000000 4 1.571429 5 2.189189 dtype: float64
New behavior (note values start at index
4
, the location of the 2nd (sincemin_periods=2
) non-empty value):In [2]: pd.ewma(s, com=3., min_periods=2) Out[2]: 0 NaN 1 NaN 2 NaN 3 NaN 4 1.759644 5 2.383784 dtype: float64
ewmstd()
,ewmvol()
,ewmvar()
,ewmcov()
, andewmcorr()
now have an optionaladjust
argument, just likeewma()
does, affecting how the weights are calculated. The default value ofadjust
isTrue
, which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)ewma()
,ewmstd()
,ewmvol()
,ewmvar()
,ewmcov()
, andewmcorr()
now have an optionalignore_na
argument. Whenignore_na=False
(the default), missing values are taken into account in the weights calculation. Whenignore_na=True
(which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation. (GH7543)In [7]: pd.ewma(Series([None, 1., 8.]), com=2.) Out[7]: 0 NaN 1 1.0 2 5.2 dtype: float64 In [8]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=True) # pre-0.15.0 behavior Out[8]: 0 1.0 1 1.0 2 5.2 dtype: float64 In [9]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=False) # new default Out[9]: 0 1.000000 1 1.000000 2 5.846154 dtype: float64
Warning
By default (
ignore_na=False
) theewm*()
functions’ weights calculation in the presence of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights in the presence of missing values one must specify explicitlyignore_na=True
.Bug in
expanding_cov()
,expanding_corr()
,rolling_cov()
,rolling_cor()
,ewmcov()
, andewmcorr()
returning results with columns sorted by name and producing an error for non-unique columns; now handles non-unique columns and returns columns in original order (except for the case of two DataFrames withpairwise=False
, where behavior is unchanged) (GH7542)Bug in
rolling_count()
andexpanding_*()
functions unnecessarily producing error message for zero-length data (GH8056)Bug in
rolling_apply()
andexpanding_apply()
interpretingmin_periods=0
asmin_periods=1
(GH8080)Bug in
expanding_std()
andexpanding_var()
for a single value producing a confusing error message (GH7900)Bug in
rolling_std()
androlling_var()
for a single value producing0
rather thanNaN
(GH7900)Bug in
ewmstd()
,ewmvol()
,ewmvar()
, andewmcov()
calculation of de-biasing factors whenbias=False
(the default). Previously an incorrect constant factor was used, based onadjust=True
,ignore_na=True
, and an infinite number of observations. Now a different factor is used for each entry, based on the actual weights (analogous to the usualN/(N-1)
factor). In particular, for a single point a value ofNaN
is returned whenbias=False
, whereas previously a value of (approximately)0
was returned.For example, consider the following pre-0.15.0 results for
ewmvar(..., bias=False)
, and the corresponding debiasing factors:In [67]: s = Series([1., 2., 0., 4.])
In [89]: ewmvar(s, com=2., bias=False) Out[89]: 0 -2.775558e-16 1 3.000000e-01 2 9.556787e-01 3 3.585799e+00 dtype: float64 In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True) Out[90]: 0 1.25 1 1.25 2 1.25 3 1.25 dtype: float64
Note that entry
0
is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following 0.15.0 results have aNaN
for entry0
, and the debiasing factors are decreasing (towards 1.25):In [14]: pd.ewmvar(s, com=2., bias=False) Out[14]: 0 NaN 1 0.500000 2 1.210526 3 4.089069 dtype: float64 In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True) Out[15]: 0 NaN 1 2.083333 2 1.583333 3 1.425439 dtype: float64
See Exponentially weighted moment functions for details. (GH7912)
Improvements in the sql io module¶
Added support for a
chunksize
parameter toto_sql
function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (GH8062).Added support for a
chunksize
parameter toread_sql
function. Specifying this argument will return an iterator through chunks of the query result (GH2908).Added support for writing
datetime.date
anddatetime.time
object columns withto_sql
(GH6932).Added support for specifying a
schema
to read from/write to withread_sql_table
andto_sql
(GH7441, GH7952). For example:df.to_sql('table', engine, schema='other_schema') pd.read_sql_table('table', engine, schema='other_schema')
Added support for writing
NaN
values withto_sql
(GH2754).Added support for writing datetime64 columns with
to_sql
for all database flavors (GH7103).
Backwards incompatible API changes¶
Breaking changes¶
API changes related to Categorical
(see here
for more details):
The
Categorical
constructor with two arguments changed from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you useCategorical
directly, please audit your code by changing it to use thefrom_codes()
constructor.An old function call like (prior to 0.15.0):
pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])
will have to adapted to the following to keep the same behaviour:
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c']) Out[2]: [a, b, a, c, b] Categories (3, object): [a, b, c]
API changes related to the introduction of the Timedelta
scalar (see
above for more details):
- Prior to 0.15.0
to_timedelta()
would return aSeries
for list-like/Series input, and anp.timedelta64
for scalar input. It will now return aTimedeltaIndex
for list-like input,Series
for Series input, andTimedelta
for scalar input.
For API changes related to the rolling and expanding functions, see detailed overview above.
Other notable API changes:
Consistency when indexing with
.loc
and a list-like indexer when no values are found.In [68]: df = DataFrame([['a'],['b']],index=[1,2]) In [69]: df Out[69]: 0 1 a 2 b
In prior versions there was a difference in these two constructs:
df.loc[[3]]
would return a frame reindexed by 3 (with allnp.nan
values)df.loc[[3],:]
would raiseKeyError
.
Both will now raise a
KeyError
. The rule is that at least 1 indexer must be found when using a list-like and.loc
(GH7999)Furthermore in prior versions these were also different:
df.loc[[1,3]]
would return a frame reindexed by [1,3]df.loc[[1,3],:]
would raiseKeyError
.
Both will now return a frame reindex by [1,3]. E.g.
In [70]: df.loc[[1,3]] Out[70]: 0 1 a 3 NaN In [71]: df.loc[[1,3],:] Out[71]: 0 1 a 3 NaN
This can also be seen in multi-axis indexing with a
Panel
.In [72]: p = Panel(np.arange(2*3*4).reshape(2,3,4), ....: items=['ItemA','ItemB'], ....: major_axis=[1,2,3], ....: minor_axis=['A','B','C','D']) ....: In [73]: p Out[73]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemB Major_axis axis: 1 to 3 Minor_axis axis: A to D
The following would raise
KeyError
prior to 0.15.0:In [74]: p.loc[['ItemA','ItemD'],:,'D'] Out[74]: ItemA ItemD 1 3 NaN 2 7 NaN 3 11 NaN
Furthermore,
.loc
will raise If no values are found in a multi-index with a list-like indexer:In [75]: s = Series(np.arange(3,dtype='int64'), ....: index=MultiIndex.from_product([['A'],['foo','bar','baz']], ....: names=['one','two']) ....: ).sortlevel() ....: In [76]: s Out[76]: one two A bar 1 baz 2 foo 0 dtype: int64 In [77]: try: ....: s.loc[['D']] ....: except KeyError as e: ....: print("KeyError: " + str(e)) ....: KeyError: 'cannot index a multi-index axis with these keys'
Assigning values to
None
now considers the dtype when choosing an ‘empty’ value (GH7941).Previously, assigning to
None
in numeric containers changed the dtype to object (or errored, depending on the call). It now usesNaN
:In [78]: s = Series([1, 2, 3]) In [79]: s.loc[0] = None In [80]: s Out[80]: 0 NaN 1 2.0 2 3.0 dtype: float64
NaT
is now used similarly for datetime containers.For object containers, we now preserve
None
values (previously these were converted toNaN
values).In [81]: s = Series(["a", "b", "c"]) In [82]: s.loc[0] = None In [83]: s Out[83]: 0 None 1 b 2 c dtype: object
To insert a
NaN
, you must explicitly usenp.nan
. See the docs.In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (GH8511, GH5104)
In [84]: s = Series([1, 2, 3]) In [85]: s2 = s In [86]: s += 1.5
Behavior prior to v0.15.0
# the original object In [5]: s Out[5]: 0 2.5 1 3.5 2 4.5 dtype: float64 # a reference to the original object In [7]: s2 Out[7]: 0 1 1 2 2 3 dtype: int64
This is now the correct behavior
# the original object In [87]: s Out[87]: 0 2.5 1 3.5 2 4.5 dtype: float64 # a reference to the original object In [88]: s2 Out[88]: 0 2.5 1 3.5 2 4.5 dtype: float64
Made both the C-based and Python engines for read_csv and read_table ignore empty lines in input as well as whitespace-filled lines, as long as
sep
is not whitespace. This is an API change that can be controlled by the keyword parameterskip_blank_lines
. See the docs (GH4466)A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone and inserted as
object
dtype rather than being converted to a naivedatetime64[ns]
(GH8411).Bug in passing a
DatetimeIndex
with a timezone that was not being retained in DataFrame construction from a dict (GH7822)In prior versions this would drop the timezone, now it retains the timezone, but gives a column of
object
dtype:In [89]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern') In [90]: i Out[90]: DatetimeIndex(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00', '2011-01-01 00:00:20-05:00'], dtype='datetime64[ns, US/Eastern]', freq='10S') In [91]: df = DataFrame( {'a' : i } ) In [92]: df Out[92]: a 0 2011-01-01 00:00:00-05:00 1 2011-01-01 00:00:10-05:00 2 2011-01-01 00:00:20-05:00 In [93]: df.dtypes Out[93]: a datetime64[ns, US/Eastern] dtype: object
Previously this would have yielded a column of
datetime64
dtype, but without timezone info.The behaviour of assigning a column to an existing dataframe as df[‘a’] = i remains unchanged (this already returned an
object
column with a timezone).When passing multiple levels to
stack()
, it will now raise aValueError
when the levels aren’t all level names or all level numbers (GH7660). See Reshaping by stacking and unstacking.Raise a
ValueError
indf.to_hdf
with ‘fixed’ format, ifdf
has non-unique columns as the resulting file will be broken (GH7761)SettingWithCopy
raise/warnings (according to the optionmode.chained_assignment
) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)In [1]: df = DataFrame(np.arange(0,9), columns=['count']) In [2]: df['group'] = 'b' In [3]: df.iloc[0:5]['group'] = 'a' /usr/local/bin/ipython:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
merge
,DataFrame.merge
, andordered_merge
now return the same type as theleft
argument (GH7737).Previously an enlargement with a mixed-dtype frame would act unlike
.append
which will preserve dtypes (related GH2578, GH8176):In [94]: df = DataFrame([[True, 1],[False, 2]], ....: columns=["female","fitness"]) ....: In [95]: df Out[95]: female fitness 0 True 1 1 False 2 In [96]: df.dtypes Out[96]: female bool fitness int64 dtype: object # dtypes are now preserved In [97]: df.loc[2] = df.loc[1] In [98]: df Out[98]: female fitness 0 True 1 1 False 2 2 False 2 In [99]: df.dtypes Out[99]: female bool fitness int64 dtype: object
Series.to_csv()
now returns a string whenpath=None
, matching the behaviour ofDataFrame.to_csv()
(GH8215).read_hdf
now raisesIOError
when a file that doesn’t exist is passed in. Previously, a new, empty file was created, and aKeyError
raised (GH7715).DataFrame.info()
now ends its output with a newline character (GH8114)Concatenating no objects will now raise a
ValueError
rather than a bareException
.Merge errors will now be sub-classes of
ValueError
rather than rawException
(GH8501)DataFrame.plot
andSeries.plot
keywords are now have consistent orders (GH8037)
Internal Refactoring¶
In 0.15.0 Index
has internally been refactored to no longer sub-class ndarray
but instead subclass PandasObject
, similarly to the rest of the pandas objects. This
change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (GH5080, GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):
- you may need to unpickle pandas version < 0.15.0 pickles using
pd.read_pickle
rather thanpickle.load
. See pickle docs - when plotting with a
PeriodIndex
, the matplotlib internal axes will now be arrays ofPeriod
rather than aPeriodIndex
(this is similar to how aDatetimeIndex
passes arrays ofdatetimes
now) - MultiIndexes will now raise similary to other pandas objects w.r.t. truth testing, see here (GH7897).
- When plotting a DatetimeIndex directly with matplotlib’s plot function,
the axis labels will no longer be formatted as dates but as integers (the
internal representation of a
datetime64
). UPDATE This is fixed in 0.15.1, see here.
Deprecations¶
- The attributes
Categorical
labels
andlevels
attributes are deprecated and renamed tocodes
andcategories
. - The
outtype
argument topd.DataFrame.to_dict
has been deprecated in favor oforient
. (GH7840) - The
convert_dummies
method has been deprecated in favor ofget_dummies
(GH8140) - The
infer_dst
argument intz_localize
will be deprecated in favor ofambiguous
to allow for more flexibility in dealing with DST transitions. Replaceinfer_dst=True
withambiguous='infer'
for the same behavior (GH7943). See the docs for more details. - The top-level
pd.value_range
has been deprecated and can be replaced by.describe()
(GH8481)
The
Index
set operations+
and-
were deprecated in order to provide these for numeric type operations on certain index types.+
can be replaced by.union()
or|
, and-
by.difference()
. Further the method nameIndex.diff()
is deprecated and can be replaced byIndex.difference()
(GH8226)# + Index(['a','b','c']) + Index(['b','c','d']) # should be replaced by Index(['a','b','c']).union(Index(['b','c','d']))
# - Index(['a','b','c']) - Index(['b','c','d']) # should be replaced by Index(['a','b','c']).difference(Index(['b','c','d']))
The
infer_types
argument toread_html()
now has no effect and is deprecated (GH7762, GH7032).
Removal of prior version deprecations/changes¶
- Remove
DataFrame.delevel
method in favor ofDataFrame.reset_index
Enhancements¶
Enhancements in the importing/exporting of Stata files:
- Added support for bool, uint8, uint16 and uint32 datatypes in
to_stata
(GH7097, GH7365) - Added conversion option when importing Stata files (GH8527)
DataFrame.to_stata
andStataWriter
check string length for compatibility with limitations imposed in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files with strings longer than 244 characters raises aValueError
. (GH7858)read_stata
andStataReader
can import missing data information into aDataFrame
by setting the argumentconvert_missing
toTrue
. When using this options, missing values are returned asStataMissingValue
objects and columns containing missing values haveobject
data type. (GH8045)
Enhancements in the plotting functions:
- Added
layout
keyword toDataFrame.plot
. You can pass a tuple of(rows, columns)
, one of which can be-1
to automatically infer (GH6667, GH8071). - Allow to pass multiple axes to
DataFrame.plot
,hist
andboxplot
(GH5353, GH6970, GH7069) - Added support for
c
,colormap
andcolorbar
arguments forDataFrame.plot
withkind='scatter'
(GH7780) - Histogram from
DataFrame.plot
withkind='hist'
(GH7809), See the docs. - Boxplot from
DataFrame.plot
withkind='box'
(GH7998), See the docs.
Other:
read_csv
now has a keyword parameterfloat_precision
which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044)Added
searchsorted
method toSeries
objects (GH7447)describe()
on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via theinclude
/exclude
arguments. See the docs (GH8164).In [100]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, .....: 'catB': ['a', 'b', 'c', 'd'] * 6, .....: 'numC': np.arange(24), .....: 'numD': np.arange(24.) + .5}) .....: In [101]: df.describe(include=["object"]) Out[101]: catA catB count 24 24 unique 2 4 top foo d freq 16 6 In [102]: df.describe(include=["number", "object"], exclude=["float"]) Out[102]: catA catB numC count 24 24 24.000000 unique 2 4 NaN top foo d NaN freq 16 6 NaN mean NaN NaN 11.500000 std NaN NaN 7.071068 min NaN NaN 0.000000 25% NaN NaN 5.750000 50% NaN NaN 11.500000 75% NaN NaN 17.250000 max NaN NaN 23.000000
Requesting all columns is possible with the shorthand ‘all’
In [103]: df.describe(include='all') Out[103]: catA catB numC numD count 24 24 24.000000 24.000000 unique 2 4 NaN NaN top foo d NaN NaN freq 16 6 NaN NaN mean NaN NaN 11.500000 12.000000 std NaN NaN 7.071068 7.071068 min NaN NaN 0.000000 0.500000 25% NaN NaN 5.750000 6.250000 50% NaN NaN 11.500000 12.000000 75% NaN NaN 17.250000 17.750000 max NaN NaN 23.000000 23.500000
Without those arguments, ‘describe` will behave as before, including only numerical columns or, if none are, only categorical columns. See also the docs
Added
split
as an option to theorient
argument inpd.DataFrame.to_dict
. (GH7840)The
get_dummies
method can now be used on DataFrames. By default only catagorical columns are encoded as 0’s and 1’s, while other columns are left untouched.In [104]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'], .....: 'C': [1, 2, 3]}) .....: In [105]: pd.get_dummies(df) Out[105]: C A_a A_b B_b B_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0
PeriodIndex
supportsresolution
as the same asDatetimeIndex
(GH7708)pandas.tseries.holiday
has added support for additional holidays and ways to observe holidays (GH7070)pandas.tseries.holiday.Holiday
now supports a list of offsets in Python3 (GH7070)pandas.tseries.holiday.Holiday
now supports a days_of_week parameter (GH7070)GroupBy.nth()
now supports selecting multiple nth values (GH7910)In [106]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B') In [107]: df = DataFrame(1, index=business_dates, columns=['a', 'b']) # get the first, 4th, and last date index for each month In [108]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1]) Out[108]: a b 2014 4 1 1 4 1 1 4 1 1 5 1 1 5 1 1 5 1 1 6 1 1 6 1 1 6 1 1
Period
andPeriodIndex
supports addition/subtraction withtimedelta
-likes (GH7966)If
Period
freq isD
,H
,T
,S
,L
,U
,N
,Timedelta
-like can be added if the result can have same freq. Otherwise, only the sameoffsets
can be added.In [109]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H') In [110]: idx Out[110]: PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00'], dtype='period[H]', freq='H') In [111]: idx + pd.offsets.Hour(2) Out[111]: PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00'], dtype='period[H]', freq='H') In [112]: idx + Timedelta('120m') Out[112]: PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00'], dtype='period[H]', freq='H') In [113]: idx = pd.period_range('2014-07', periods=5, freq='M') In [114]: idx Out[114]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='period[M]', freq='M') In [115]: idx + pd.offsets.MonthEnd(3) Out[115]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='period[M]', freq='M')
Added experimental compatibility with
openpyxl
for versions >= 2.0. TheDataFrame.to_excel
methodengine
keyword now recognizesopenpyxl1
andopenpyxl2
which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. Theopenpyxl
engine is a now a meta-engine that automatically uses whichever version of openpyxl is installed. (GH7177)DataFrame.fillna
can now accept aDataFrame
as a fill value (GH8377)Passing multiple levels to
stack()
will now work when multiple level numbers are passed (GH7660). See Reshaping by stacking and unstacking.set_names()
,set_labels()
, andset_levels()
methods now take an optionallevel
keyword argument to all modification of specific level(s) of a MultiIndex. Additionallyset_names()
now accepts a scalar string value when operating on anIndex
or on a specific level of aMultiIndex
(GH7792)In [116]: idx = MultiIndex.from_product([['a'], range(3), list("pqr")], names=['foo', 'bar', 'baz']) In [117]: idx.set_names('qux', level=0) Out[117]: MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']], labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], names=[u'qux', u'bar', u'baz']) In [118]: idx.set_names(['qux','baz'], level=[0,1]) Out[118]: MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']], labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], names=[u'qux', u'baz', u'baz']) In [119]: idx.set_levels(['a','b','c'], level='bar') Out[119]: MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [u'p', u'q', u'r']], labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], names=[u'foo', u'bar', u'baz']) In [120]: idx.set_levels([['a','b','c'],[1,2,3]], level=[1,2]) Out[120]: MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [1, 2, 3]], labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], names=[u'foo', u'bar', u'baz'])
Index.isin
now supports alevel
argument to specify which index level to use for membership tests (GH7892, GH7890)In [1]: idx = MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]) In [2]: idx.values Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object) In [3]: idx.isin(['a', 'c', 'e'], level=1) Out[3]: array([ True, False, True, True, False, True], dtype=bool)
Index
now supportsduplicated
anddrop_duplicates
. (GH4060)In [121]: idx = Index([1, 2, 3, 4, 1, 2]) In [122]: idx Out[122]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64') In [123]: idx.duplicated() Out[123]: array([False, False, False, False, True, True], dtype=bool) In [124]: idx.drop_duplicates() Out[124]: Int64Index([1, 2, 3, 4], dtype='int64')
add
copy=True
argument topd.concat
to enable pass thru of complete blocks (GH8252)Added support for numpy 1.8+ data types (
bool_
,int_
,float_
,string_
) for conversion to R dataframe (GH8400)
Performance¶
- Performance improvements in
DatetimeIndex.__iter__
to allow faster iteration (GH7683) - Performance improvements in
Period
creation (andPeriodIndex
setitem) (GH5155) - Improvements in Series.transform for significant performance gains (revised) (GH6496)
- Performance improvements in
StataReader
when reading large files (GH8040, GH8073) - Performance improvements in
StataWriter
when writing large files (GH8079) - Performance and memory usage improvements in multi-key
groupby
(GH8128) - Performance improvements in groupby
.agg
and.apply
where builtins max/min were not mapped to numpy/cythonized versions (GH7722) - Performance improvement in writing to sql (
to_sql
) of up to 50% (GH8208). - Performance benchmarking of groupby for large value of ngroups (GH6787)
- Performance improvement in
CustomBusinessDay
,CustomBusinessMonth
(GH8236) - Performance improvement for
MultiIndex.values
for multi-level indexes containing datetimes (GH8543)
Bug Fixes¶
- Bug in pivot_table, when using margins and a dict aggfunc (GH8349)
- Bug in
read_csv
wheresqueeze=True
would return a view (GH8217) - Bug in checking of table name in
read_sql
in certain cases (GH7826). - Bug in
DataFrame.groupby
whereGrouper
does not recognize level when frequency is specified (GH7885) - Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021)
- Bug in
Series
0-division with a float and integer operand dtypes (GH7785) - Bug in
Series.astype("unicode")
not callingunicode
on the values correctly (GH7758) - Bug in
DataFrame.as_matrix()
with mixeddatetime64[ns]
andtimedelta64[ns]
dtypes (GH7778) - Bug in
HDFStore.select_column()
not preserving UTC timezone info when selecting aDatetimeIndex
(GH7777) - Bug in
to_datetime
whenformat='%Y%m%d'
andcoerce=True
are specified, where previously an object array was returned (rather than a coerced time-series withNaT
), (GH7930) - Bug in
DatetimeIndex
andPeriodIndex
in-place addition and subtraction cause different result from normal one (GH6527) - Bug in adding and subtracting
PeriodIndex
withPeriodIndex
raiseTypeError
(GH7741) - Bug in
combine_first
withPeriodIndex
data raisesTypeError
(GH3367) - Bug in multi-index slicing with missing indexers (GH7866)
- Bug in multi-index slicing with various edge cases (GH8132)
- Regression in multi-index indexing with a non-scalar type object (GH7914)
- Bug in
Timestamp
comparisons with==
andint64
dtype (GH8058) - Bug in pickles contains
DateOffset
may raiseAttributeError
whennormalize
attribute is reffered internally (GH7748) - Bug in
Panel
when usingmajor_xs
andcopy=False
is passed (deprecation warning fails because of missingwarnings
) (GH8152). - Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)
- Bug in putting a
PeriodIndex
into aSeries
would convert toint64
dtype, rather thanobject
ofPeriods
(GH7932) - Bug in
HDFStore
iteration when passing a where (GH8014) - Bug in
DataFrameGroupby.transform
when transforming with a passed non-sorted key (GH8046, GH8430) - Bug in repeated timeseries line and area plot may result in
ValueError
or incorrect kind (GH7733) - Bug in inference in a
MultiIndex
withdatetime.date
inputs (GH7888) - Bug in
get
where anIndexError
would not cause the default value to be returned (GH7725) - Bug in
offsets.apply
,rollforward
androllback
may reset nanosecond (GH7697) - Bug in
offsets.apply
,rollforward
androllback
may raiseAttributeError
ifTimestamp
hasdateutil
tzinfo (GH7697) - Bug in sorting a multi-index frame with a
Float64Index
(GH8017) - Bug in inconsistent panel setitem with a rhs of a
DataFrame
for alignment (GH7763) - Bug in
is_superperiod
andis_subperiod
cannot handle higher frequencies thanS
(GH7760, GH7772, GH7803) - Bug in 32-bit platforms with
Series.shift
(GH8129) - Bug in
PeriodIndex.unique
returns int64np.ndarray
(GH7540) - Bug in
groupby.apply
with a non-affecting mutation in the function (GH8467) - Bug in
DataFrame.reset_index
which hasMultiIndex
containsPeriodIndex
orDatetimeIndex
with tz raisesValueError
(GH7746, GH7793) - Bug in
DataFrame.plot
withsubplots=True
may draw unnecessary minor xticks and yticks (GH7801) - Bug in
StataReader
which did not read variable labels in 117 files due to difference between Stata documentation and implementation (GH7816) - Bug in
StataReader
where strings were always converted to 244 characters-fixed width irrespective of underlying string size (GH7858) - Bug in
DataFrame.plot
andSeries.plot
may ignorerot
andfontsize
keywords (GH7844) - Bug in
DatetimeIndex.value_counts
doesn’t preserve tz (GH7735) - Bug in
PeriodIndex.value_counts
results inInt64Index
(GH7735) - Bug in
DataFrame.join
when doing left join on index and there are multiple matches (GH5391) - Bug in
GroupBy.transform()
where int groups with a transform that didn’t preserve the index were incorrectly truncated (GH7972). - Bug in
groupby
where callable objects without name attributes would take the wrong path, and produce aDataFrame
instead of aSeries
(GH7929) - Bug in
groupby
error message when a DataFrame grouping column is duplicated (GH7511) - Bug in
read_html
where theinfer_types
argument forced coercion of date-likes incorrectly (GH7762, GH7032). - Bug in
Series.str.cat
with an index which was filtered as to not include the first item (GH7857) - Bug in
Timestamp
cannot parsenanosecond
from string (GH7878) - Bug in
Timestamp
with string offset andtz
results incorrect (GH7833) - Bug in
tslib.tz_convert
andtslib.tz_convert_single
may return different results (GH7798) - Bug in
DatetimeIndex.intersection
of non-overlapping timestamps with tz raisesIndexError
(GH7880) - Bug in alignment with TimeOps and non-unique indexes (GH8363)
- Bug in
GroupBy.filter()
where fast path vs. slow path made the filter return a non scalar value that appeared valid but wasn’t (GH7870). - Bug in
date_range()
/DatetimeIndex()
when the timezone was inferred from input dates yet incorrect times were returned when crossing DST boundaries (GH7835, GH7901). - Bug in
to_excel()
where a negative sign was being prepended to positive infinity and was absent for negative infinity (GH7949) - Bug in area plot draws legend with incorrect
alpha
whenstacked=True
(GH8027) Period
andPeriodIndex
addition/subtraction withnp.timedelta64
results in incorrect internal representations (GH7740)- Bug in
Holiday
with no offset or observance (GH7987) - Bug in
DataFrame.to_latex
formatting when columns or index is aMultiIndex
(GH7982). - Bug in
DateOffset
around Daylight Savings Time produces unexpected results (GH5175). - Bug in
DataFrame.shift
where empty columns would throwZeroDivisionError
on numpy 1.7 (GH8019) - Bug in installation where
html_encoding/*.html
wasn’t installed and therefore some tests were not running correctly (GH7927). - Bug in
read_html
wherebytes
objects were not tested for in_read
(GH7927). - Bug in
DataFrame.stack()
when one of the column levels was a datelike (GH8039) - Bug in broadcasting numpy scalars with
DataFrame
(GH8116) - Bug in
pivot_table
performed with namelessindex
andcolumns
raisesKeyError
(GH8103) - Bug in
DataFrame.plot(kind='scatter')
draws points and errorbars with different colors when the color is specified byc
keyword (GH8081) - Bug in
Float64Index
whereiat
andat
were not testing and were failing (GH8092). - Bug in
DataFrame.boxplot()
where y-limits were not set correctly when producing multiple axes (GH7528, GH5517). - Bug in
read_csv
where line comments were not handled correctly given a custom line terminator ordelim_whitespace=True
(GH8122). - Bug in
read_html
where empty tables caused aStopIteration
(GH7575) - Bug in casting when setting a column in a same-dtype block (GH7704)
- Bug in accessing groups from a
GroupBy
when the original grouper was a tuple (GH8121). - Bug in
.at
that would accept integer indexers on a non-integer index and do fallback (GH7814) - Bug with kde plot and NaNs (GH8182)
- Bug in
GroupBy.count
with float32 data type were nan values were not excluded (GH8169). - Bug with stacked barplots and NaNs (GH8175).
- Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)
- Bug in interpolation methods with the
limit
keyword when no values needed interpolating (GH7173). - Bug where
col_space
was ignored inDataFrame.to_string()
whenheader=False
(GH8230). - Bug with
DatetimeIndex.asof
incorrectly matching partial strings and returning the wrong date (GH8245). - Bug in plotting methods modifying the global matplotlib rcParams (GH8242).
- Bug in
DataFrame.__setitem__
that caused errors when setting a dataframe column to a sparse array (GH8131) - Bug where
Dataframe.boxplot()
failed when entire column was empty (GH8181). - Bug with messed variables in
radviz
visualization (GH8199). - Bug in interpolation methods with the
limit
keyword when no values needed interpolating (GH7173). - Bug where
col_space
was ignored inDataFrame.to_string()
whenheader=False
(GH8230). - Bug in
to_clipboard
that would clip long column data (GH8305) - Bug in
DataFrame
terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (GH7180). - Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884).
- Bug in
DataFrame.dropna
that interpreted non-existent columns in the subset argument as the ‘last column’ (GH8303) - Bug in
Index.intersection
on non-monotonic non-unique indexes (GH8362). - Bug in masked series assignment where mismatching types would break alignment (GH8387)
- Bug in
NDFrame.equals
gives false negatives with dtype=object (GH8437) - Bug in assignment with indexer where type diversity would break alignment (GH8258)
- Bug in
NDFrame.loc
indexing when row/column names were lost when target was a list/ndarray (GH6552) - Regression in
NDFrame.loc
indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (GH7774) - Bug in
Series
that allows it to be indexed by aDataFrame
which has unexpected results. Such indexing is no longer permitted (GH8444) - Bug in item assignment of a
DataFrame
with multi-index columns where right-hand-side columns were not aligned (GH7655) - Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (GH7065)
- Bug in
DataFrame.eval()
where the dtype of thenot
operator (~
) was not correctly inferred asbool
.
v0.14.1 (July 11, 2014)¶
This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
- Highlights include:
- New methods
select_dtypes()
to select columns based on the dtype andsem()
to calculate the standard error of the mean. - Support for dateutil timezones (see docs).
- Support for ignoring full line comments in the
read_csv()
text parser. - New documentation section on Options and Settings.
- Lots of bug fixes.
- New methods
- Enhancements
- API Changes
- Performance Improvements
- Experimental Changes
- Bug Fixes
API changes¶
Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import (GH7284).
For
StringMethods.extract
, when no match is found, the result - only containingNaN
values - now also hasdtype=object
instead offloat
(GH7242)Period
objects no longer raise aTypeError
when compared using==
with another object that isn’t aPeriod
. Instead when comparing aPeriod
with another object using==
if the other object isn’t aPeriod
False
is returned. (GH7376)Previously, the behaviour on resetting the time or not in
offsets.apply
,rollforward
androllback
operations differed between offsets. With the support of thenormalize
keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth, FY5253Quarter, LastWeekOfMonth, Easter):In [6]: from pandas.tseries import offsets In [7]: d = pd.Timestamp('2014-01-01 09:00') # old behaviour < 0.14.1 In [8]: d + offsets.MonthEnd() Out[8]: Timestamp('2014-01-31 00:00:00')
Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with
normalize=True
# new behaviour In [1]: d + offsets.MonthEnd() Out[1]: Timestamp('2014-01-31 09:00:00') In [2]: d + offsets.MonthEnd(normalize=True) Out[2]: Timestamp('2014-01-31 00:00:00')
Note that for the other offsets the default behaviour did not change.
Add back
#N/A N/A
as a default NA value in text parsing, (regresion from 0.12) (GH5521)Raise a
TypeError
on inplace-setting with a.where
and a nonnp.nan
value as this is inconsistent with a set-item expression likedf[mask] = None
(GH7656)
Enhancements¶
Add
dropna
argument tovalue_counts
andnunique
(GH5569).Add
select_dtypes()
method to allow selection of columns based on dtype (GH7316). See the docs.All
offsets
suppports thenormalize
keyword to specify whetheroffsets.apply
,rollforward
androllback
resets the time (hour, minute, etc) or not (defaultFalse
, preserves time) (GH7156):In [3]: import pandas.tseries.offsets as offsets In [4]: day = offsets.Day() In [5]: day.apply(Timestamp('2014-01-01 09:00')) Out[5]: Timestamp('2014-01-02 09:00:00') In [6]: day = offsets.Day(normalize=True) In [7]: day.apply(Timestamp('2014-01-01 09:00')) Out[7]: Timestamp('2014-01-02 00:00:00')
PeriodIndex
is represented as the same format asDatetimeIndex
(GH7601)StringMethods
now work on empty Series (GH7242)The file parsers
read_csv
andread_table
now ignore line comments provided by the parameter comment, which accepts only a single character for the C reader. In particular, they allow for comments before file data begins (GH2685)Add
NotImplementedError
for simultaneous use ofchunksize
andnrows
for read_csv() (GH6774).Tests for basic reading of public S3 buckets now exist (GH7281).
read_html
now sports anencoding
argument that is passed to the underlying parser library. You can use this to read non-ascii encoded web pages (GH7323).read_excel
now supports reading from URLs in the same way thatread_csv
does. (GH6809)Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas. (GH4688)
In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D', ...: tz='dateutil/Europe/London') ...: In [9]: rng.tz Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')
See the docs.
Implemented
sem
(standard error of the mean) operation forSeries
,DataFrame
,Panel
, andGroupby
(GH6897)Add
nlargest
andnsmallest
to theSeries
groupby
whitelist, which means you can now use these methods on aSeriesGroupBy
object (GH7053).All offsets
apply
,rollforward
androllback
can now handlenp.datetime64
, previously results inApplyTypeError
(GH7452)Period
andPeriodIndex
can containNaT
in its values (GH7485)Support pickling
Series
,DataFrame
andPanel
objects with non-unique labels along item axis (index
,columns
anditems
respectively) (GH7370).Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of an object Index with all null elements (GH7431)
Performance¶
- Improvements in dtype inference for numeric operations involving yielding performance gains for dtypes:
int64
,timedelta64
,datetime64
(GH7223) - Improvements in Series.transform for significant performance gains (GH6496)
- Improvements in DataFrame.transform with ufuncs and built-in grouper functions for signifcant performance gains (GH7383)
- Regression in groupby aggregation of datetime64 dtypes (GH7555)
- Improvements in MultiIndex.from_product for large iterables (GH7627)
Experimental¶
pandas.io.data.Options
has a new method,get_all_data
method, and now consistently returns a multi-indexedDataFrame
(GH5602)io.gbq.read_gbq
andio.gbq.to_gbq
were refactored to remove the dependency on the Googlebq.py
command line client. This submodule now useshttplib2
and the Googleapiclient
andoauth2client
API client libraries which should be more stable and, therefore, reliable thanbq.py
. See the docs. (GH6937).
Bug Fixes¶
- Bug in
DataFrame.where
with a symmetric shaped frame and a passed other of a DataFrame (GH7506) - Bug in Panel indexing with a multi-index axis (GH7516)
- Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)
- Bug in setitem with list-of-lists and single vs mixed types (GH7551:)
- Bug in timeops with non-aligned Series (GH7500)
- Bug in timedelta inference when assigning an incomplete Series (GH7592)
- Bug in groupby
.nth
with a Series and integer-like column name (GH7559) - Bug in
Series.get
with a boolean accessor (GH7407) - Bug in
value_counts
whereNaT
did not qualify as missing (NaN
) (GH7423) - Bug in
to_timedelta
that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423) - Bug in line plot doesn’t set correct
xlim
ifsecondary_y=True
(GH7459) - Bug in grouped
hist
andscatter
plots use oldfigsize
default (GH7394) - Bug in plotting subplots with
DataFrame.plot
,hist
clears passedax
even if the number of subplots is one (GH7391). - Bug in plotting subplots with
DataFrame.boxplot
withby
kw raisesValueError
if the number of subplots exceeds 1 (GH7391). - Bug in subplots displays
ticklabels
andlabels
in different rule (GH5897) - Bug in
Panel.apply
with a multi-index as an axis (GH7469) - Bug in
DatetimeIndex.insert
doesn’t preservename
andtz
(GH7299) - Bug in
DatetimeIndex.asobject
doesn’t preservename
(GH7299) - Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
- Bug in
Index.min
andmax
doesn’t handlenan
andNaT
properly (GH7261) - Bug in
PeriodIndex.min/max
results inint
(GH7609) - Bug in
resample
wherefill_method
was ignored if you passedhow
(GH2073) - Bug in
TimeGrouper
doesn’t exclude column specified bykey
(GH7227) - Bug in
DataFrame
andSeries
bar and barh plot raisesTypeError
whenbottom
andleft
keyword is specified (GH7226) - Bug in
DataFrame.hist
raisesTypeError
when it contains non numeric column (GH7277) - Bug in
Index.delete
does not preservename
andfreq
attributes (GH7302) - Bug in
DataFrame.query()
/eval
where local string variables with the @ sign were being treated as temporaries attempting to be deleted (GH7300). - Bug in
Float64Index
which didn’t allow duplicates (GH7149). - Bug in
DataFrame.replace()
where truthy values were being replaced (GH7140). - Bug in
StringMethods.extract()
where a single match group Series would use the matcher’s name instead of the group name (GH7313). - Bug in
isnull()
whenmode.use_inf_as_null == True
where isnull wouldn’t testTrue
when it encountered aninf
/-inf
(GH7315). - Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)
- Bug in
Easter
returns incorrect date when offset is negative (GH7195) - Bug in broadcasting with
.div
, integer dtypes and divide-by-zero (GH7325) - Bug in
CustomBusinessDay.apply
raiasesNameError
whennp.datetime64
object is passed (GH7196) - Bug in
MultiIndex.append
,concat
andpivot_table
don’t preserve timezone (GH6606) - Bug in
.loc
with a list of indexers on a single-multi index level (that is not nested) (GH7349) - Bug in
Series.map
when mapping a dict with tuple keys of different lengths (GH7333) - Bug all
StringMethods
now work on empty Series (GH7242) - Fix delegation of read_sql to read_sql_query when query does not contain ‘select’ (GH7324).
- Bug where a string column name assignment to a
DataFrame
with aFloat64Index
raised aTypeError
during a call tonp.isnan
(GH7366). - Bug where
NDFrame.replace()
didn’t correctly replace objects withPeriod
values (GH7379). - Bug in
.ix
getitem should always return a Series (GH7150) - Bug in multi-index slicing with incomplete indexers (GH7399)
- Bug in multi-index slicing with a step in a sliced level (GH7400)
- Bug where negative indexers in
DatetimeIndex
were not correctly sliced (GH7408) - Bug where
NaT
wasn’t repr’d correctly in aMultiIndex
(GH7406, GH7409). - Bug where bool objects were converted to
nan
inconvert_objects
(GH7416). - Bug in
quantile
ignoring the axis keyword argument (:issue`7306`) - Bug where
nanops._maybe_null_out
doesn’t work with complex numbers (GH7353) - Bug in several
nanops
functions whenaxis==0
for 1-dimensionalnan
arrays (GH7354) - Bug where
nanops.nanmedian
doesn’t work whenaxis==None
(GH7352) - Bug where
nanops._has_infs
doesn’t work with many dtypes (GH7357) - Bug in
StataReader.data
where reading a 0-observation dta failed (GH7369) - Bug in
StataReader
when reading Stata 13 (117) files containing fixed width strings (GH7360) - Bug in
StataWriter
where encoding was ignored (GH7286) - Bug in
DatetimeIndex
comparison doesn’t handleNaT
properly (GH7529) - Bug in passing input with
tzinfo
to some offsetsapply
,rollforward
orrollback
resetstzinfo
or raisesValueError
(GH7465) - Bug in
DatetimeIndex.to_period
,PeriodIndex.asobject
,PeriodIndex.to_timestamp
doesn’t preservename
(GH7485) - Bug in
DatetimeIndex.to_period
andPeriodIndex.to_timestanp
handleNaT
incorrectly (GH7228) - Bug in
offsets.apply
,rollforward
androllback
may return normaldatetime
(GH7502) - Bug in
resample
raisesValueError
when target containsNaT
(GH7227) - Bug in
Timestamp.tz_localize
resetsnanosecond
info (GH7534) - Bug in
DatetimeIndex.asobject
raisesValueError
when it containsNaT
(GH7539) - Bug in
Timestamp.__new__
doesn’t preserve nanosecond properly (GH7610) - Bug in
Index.astype(float)
where it would return anobject
dtypeIndex
(GH7464). - Bug in
DataFrame.reset_index
losestz
(GH3950) - Bug in
DatetimeIndex.freqstr
raisesAttributeError
whenfreq
isNone
(GH7606) - Bug in
GroupBy.size
created byTimeGrouper
raisesAttributeError
(GH7453) - Bug in single column bar plot is misaligned (GH7498).
- Bug in area plot with tz-aware time series raises
ValueError
(GH7471) - Bug in non-monotonic
Index.union
may preservename
incorrectly (GH7458) - Bug in
DatetimeIndex.intersection
doesn’t preserve timezone (GH4690) - Bug in
rolling_var
where a window larger than the array would raise an error(GH7297) - Bug with last plotted timeseries dictating
xlim
(GH2960) - Bug with
secondary_y
axis not being considered for timeseriesxlim
(GH3490) - Bug in
Float64Index
assignment with a non scalar indexer (GH7586) - Bug in
pandas.core.strings.str_contains
does not properly match in a case insensitive fashion whenregex=False
andcase=False
(GH7505) - Bug in
expanding_cov
,expanding_corr
,rolling_cov
, androlling_corr
for two arguments with mismatched index (GH7512) - Bug in
to_sql
taking the boolean column as text column (GH7678) - Bug in grouped hist doesn’t handle rot kw and sharex kw properly (GH7234)
- Bug in
.loc
performing fallback integer indexing withobject
dtype indices (GH7496) - Bug (regression) in
PeriodIndex
constructor when passedSeries
objects (GH7701).
v0.14.0 (May 31 , 2014)¶
This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
- Highlights include:
- Officially support Python 3.4
- SQL interfaces updated to use
sqlalchemy
, See Here. - Display interface changes, See Here
- MultiIndexing Using Slicers, See Here.
- Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see Here
- More consistency in groupby results and more flexible groupby specifications, See Here
- Holiday calendars are now supported in
CustomBusinessDay
, see Here - Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.
- Performance doc section on I/O operations, See Here
- Other Enhancements
- API Changes
- Text Parsing API Changes
- Groupby API Changes
- Performance Improvements
- Prior Deprecations
- Deprecations
- Known Issues
- Bug Fixes
Warning
In 0.14.0 all NDFrame
based containers have undergone significant internal refactoring. Before that each block of
homogeneous data had its own labels and extra care was necessary to keep those in sync with the parent container’s labels.
This should not have any visible user/API behavior changes (GH6745)
API changes¶
read_excel
uses 0 as the default sheet (GH6573)iloc
will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raiseIndexError
(GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)In [1]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB')) In [2]: dfl Out[2]: A B 0 1.583584 -0.438313 1 -0.402537 -0.780572 2 -0.141685 0.542241 3 0.370966 -0.251642 4 0.787484 1.666563 In [3]: dfl.iloc[:,2:3] Out[3]: Empty DataFrame Columns: [] Index: [0, 1, 2, 3, 4] In [4]: dfl.iloc[:,1:3] Out[4]: B 0 -0.438313 1 -0.780572 2 0.542241 3 -0.251642 4 1.666563 In [5]: dfl.iloc[4:6] Out[5]: A B 4 0.787484 1.666563
These are out-of-bounds selections
dfl.iloc[[4,5,6]] IndexError: positional indexers are out-of-bounds dfl.iloc[:,4] IndexError: single positional indexer is out-of-bounds
Slicing with negative start, stop & step values handles corner cases better (GH6531):
df.iloc[:-len(df)]
is now emptydf.iloc[len(df)::-1]
now enumerates all elements in reverse
The
DataFrame.interpolate()
keyworddowncast
default has been changed frominfer
toNone
. This is to preseve the original dtype unless explicitly requested otherwise (GH6290).When converting a dataframe to HTML it used to return Empty DataFrame. This special case has been removed, instead a header with the column names is returned (GH6062).
Series
andIndex
now internall share more common operations, e.g.factorize(),nunique(),value_counts()
are now supported onIndex
types as well. TheSeries.weekday
property from is removed from Series for API consistency. Using aDatetimeIndex/PeriodIndex
method on a Series will now raise aTypeError
. (GH4551, GH4056, GH5519, GH6380, GH7206).Add
is_month_start
,is_month_end
,is_quarter_start
,is_quarter_end
,is_year_start
,is_year_end
accessors forDateTimeIndex
/Timestamp
which return a boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of theDateTimeIndex
/Timestamp
(GH4565, GH6998)Local variable usage has changed in
pandas.eval()
/DataFrame.eval()
/DataFrame.query()
(GH5987). For theDataFrame
methods, two things have changed- Column names are now given precedence over locals
- Local variables must be referred to explicitly. This means that even if
you have a local variable that is not a column you must still refer to
it with the
'@'
prefix. - You can have an expression like
df.query('@a < a')
with no complaints frompandas
about ambiguity of the namea
. - The top-level
pandas.eval()
function does not allow you use the'@'
prefix and provides you with an error message telling you so. NameResolutionError
was removed because it isn’t necessary anymore.
Define and document the order of column vs index names in query/eval (GH6676)
concat
will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docsSlicing and advanced/boolean indexing operations on
Index
classes as well asIndex.delete()
andIndex.drop()
methods will no longer change the type of the resulting index (GH6440, GH7040)In [6]: i = pd.Index([1, 2, 3, 'a' , 'b', 'c']) In [7]: i[[0,1,2]] Out[7]: Index([1, 2, 3], dtype='object') In [8]: i.drop(['a', 'b', 'c']) Out[8]: Index([1, 2, 3], dtype='object')
Previously, the above operation would return
Int64Index
. If you’d like to do this manually, useIndex.astype()
In [9]: i[[0,1,2]].astype(np.int_) Out[9]: Int64Index([1, 2, 3], dtype='int64')
set_index
no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):# Old behavior, casted MultiIndex to an Index In [10]: tuple_ind Out[10]: Index([(u'a', u'c'), (u'a', u'd'), (u'b', u'c'), (u'b', u'd')], dtype='object') In [11]: df_multi.set_index(tuple_ind) Out[11]: 0 1 (a, c) 0.471435 -1.190976 (a, d) 1.432707 -0.312652 (b, c) -0.720589 0.887163 (b, d) 0.859588 -0.636524 # New behavior In [12]: mi Out[12]: MultiIndex(levels=[[u'a', u'b'], [u'c', u'd']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) In [13]: df_multi.set_index(mi) Out[13]: 0 1 a c 0.471435 -1.190976 d 1.432707 -0.312652 b c -0.720589 0.887163 d 0.859588 -0.636524
This also applies when passing multiple indices to
set_index
:# Old output, 2-level MultiIndex of tuples In [14]: df_multi.set_index([df_multi.index, df_multi.index]) Out[14]: 0 1 (a, c) (a, c) 0.471435 -1.190976 (a, d) (a, d) 1.432707 -0.312652 (b, c) (b, c) -0.720589 0.887163 (b, d) (b, d) 0.859588 -0.636524 # New output, 4-level MultiIndex In [15]: df_multi.set_index([df_multi.index, df_multi.index]) Out[15]: 0 1 a c a c 0.471435 -1.190976 d a d 1.432707 -0.312652 b c b c -0.720589 0.887163 d b d 0.859588 -0.636524
pairwise
keyword was added to the statistical moment functionsrolling_cov
,rolling_corr
,ewmcov
,ewmcorr
,expanding_cov
,expanding_corr
to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.In [1]: df = DataFrame(np.random.randn(10,4),columns=list('ABCD')) In [4]: covs = pd.rolling_cov(df[['A','B','C']], df[['B','C','D']], 5, pairwise=True) In [5]: covs[df.index[-1]] Out[5]: B C D A 0.035310 0.326593 -0.505430 B 0.137748 -0.006888 -0.005383 C -0.006888 0.861040 0.020762
Series.iteritems()
is now lazy (returns an iterator rather than a list). This was the documented behavior prior to 0.14. (GH6760)Added
nunique
andvalue_counts
functions toIndex
for counting unique elements. (GH6734)stack
andunstack
now raise aValueError
when thelevel
keyword refers to a non-unique item in theIndex
(previously raised aKeyError
). (GH6738)drop unused order argument from
Series.sort
; args now are in the same order asSeries.order
; addna_position
arg to conform toSeries.order
(GH6847)default sorting algorithm for
Series.order
is nowquicksort
, to conform withSeries.sort
(and numpy defaults)add
inplace
keyword toSeries.order/sort
to make them inverses (GH6859)DataFrame.sort
now places NaNs at the beginning or end of the sort according to thena_position
parameter. (GH3917)accept
TextFileReader
inconcat
, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1Added
factorize
functions toIndex
andSeries
to get indexer and unique values (GH7090)describe
on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088). Previously the index was unintentionally sorted.Arithmetic operations with only
bool
dtypes now give a warning indicating that they are evaluated in Python space for+
,-
, and*
operations and raise for all others (GH7011, GH6762, GH7015, GH7210)x = pd.Series(np.random.rand(10) > 0.5) y = True x + y # warning generated: should do x | y instead x / y # this raises because it doesn't make sense NotImplementedError: operator '/' not implemented for bool dtypes
In
HDFStore
,select_as_multiple
will always raise aKeyError
, when a key or the selector is not found (GH6177)df['col'] = value
anddf.loc[:,'col'] = value
are now completely equivalent; previously the.loc
would not necessarily coerce the dtype of the resultant series (GH6149)dtypes
andftypes
now return a series withdtype=object
on empty containers (GH5740)df.to_csv
will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)pd.infer_freq()
will now raise aTypeError
if given an invalidSeries/Index
type (GH6407, GH6463)A tuple passed to
DataFame.sort_index
will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)all offset operations now return
Timestamp
types (rather than datetime), Business/Week frequencies were incorrect (GH4069)to_excel
now convertsnp.inf
into a string representation, customizable by theinf_rep
keyword argument (Excel has no native inf representation) (GH6782)Replace
pandas.compat.scipy.scoreatpercentile
withnumpy.percentile
(GH6810).quantile
on adatetime[ns]
series now returnsTimestamp
instead ofnp.datetime64
objects (GH6810)change
AssertionError
toTypeError
for invalid types passed toconcat
(GH6583)Raise a
TypeError
whenDataFrame
is passed an iterator as thedata
argument (GH5357)
Display Changes¶
The default way of printing large DataFrames has changed. DataFrames exceeding
max_rows
and/ormax_columns
are now displayed in a centrally truncated view, consistent with the printing of apandas.Series
(GH5603).In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (...) signaled that part of the data was cut off.
In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.
allow option
'truncate'
fordisplay.show_dimensions
to only show the dimensions if the frame is truncated (GH6547).The default for
display.show_dimensions
will now betruncate
. This is consistent with how Series display length.In [16]: dfd = pd.DataFrame(np.arange(25).reshape(-1,5), index=[0,1,2,3,4], columns=[0,1,2,3,4]) # show dimensions since this is truncated In [17]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2, ....: 'display.show_dimensions', 'truncate'): ....: print(dfd) ....: 0 ... 4 0 0 ... 4 .. .. ... .. 4 20 ... 24 [5 rows x 5 columns] # will not show dimensions since it is not truncated In [18]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40, ....: 'display.show_dimensions', 'truncate'): ....: print(dfd) ....: 0 1 2 3 4 0 0 1 2 3 4 1 5 6 7 8 9 2 10 11 12 13 14 3 15 16 17 18 19 4 20 21 22 23 24
Regression in the display of a MultiIndexed Series with
display.max_rows
is less than the length of the series (GH7101)Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to ‘info’ (GH7105)
The verbose keyword in
DataFrame.info()
, which controls whether to shorten theinfo
representation, is nowNone
by default. This will follow the global setting indisplay.max_info_columns
. The global setting can be overriden withverbose=True
orverbose=False
.Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
Offset/freq info now in Timestamp __repr__ (GH4553)
Text Parsing API Changes¶
read_csv()
/read_table()
will now be noiser w.r.t invalid options rather than falling back to the PythonParser
.
- Raise
ValueError
whensep
specified withdelim_whitespace=True
inread_csv()
/read_table()
(GH6607) - Raise
ValueError
whenengine='c'
specified with unsupported options inread_csv()
/read_table()
(GH6607) - Raise
ValueError
when fallback to python parser causes options to be ignored (GH6607) - Produce
ParserWarning
on fallback to python parser when no options are ignored (GH6607) - Translate
sep='\s+'
todelim_whitespace=True
inread_csv()
/read_table()
if no other C-unsupported options specified (GH6607)
Groupby API Changes¶
More consistent behaviour for some groupby methods:
groupby
head
andtail
now act more likefilter
rather than an aggregation:In [19]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) In [20]: g = df.groupby('A') In [21]: g.head(1) # filters DataFrame Out[21]: A B 0 1 2 2 5 6 In [22]: g.apply(lambda x: x.head(1)) # used to simply fall-through Out[22]: A B A 1 0 1 2 5 2 5 6
groupby head and tail respect column selection:
In [23]: g[['B']].head(1) Out[23]: B 0 2 2 6
groupby
nth
now reduces by default; filtering can be achieved by passingas_index=False
. With an optionaldropna
argument to ignore NaN. See the docs.Reducing
In [24]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) In [25]: g = df.groupby('A') In [26]: g.nth(0) Out[26]: B A 1 NaN 5 6.0 # this is equivalent to g.first() In [27]: g.nth(0, dropna='any') Out[27]: B A 1 4.0 5 6.0 # this is equivalent to g.last() In [28]: g.nth(-1, dropna='any') Out[28]: B A 1 4.0 5 6.0
Filtering
In [29]: gf = df.groupby('A',as_index=False) In [30]: gf.nth(0) Out[30]: A B 0 1 NaN 2 5 6.0 In [31]: gf.nth(0, dropna='any') Out[31]: A B A 1 1 4.0 5 5 6.0
groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index
In [32]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B']) In [33]: g = df.groupby('A') In [34]: g.count() Out[34]: B A 1 1 5 2 In [35]: g.describe() Out[35]: B A 1 count 1.000000 mean 4.000000 std NaN min 4.000000 25% 4.000000 50% 4.000000 75% 4.000000 ... ... 5 mean 7.000000 std 1.414214 min 6.000000 25% 6.500000 50% 7.000000 75% 7.500000 max 8.000000 [16 rows x 1 columns]
passing
as_index
will leave the grouped column in-place (this is not change in 0.14.0)In [36]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B']) In [37]: g = df.groupby('A',as_index=False) In [38]: g.count() Out[38]: A B 0 1 1 1 5 2 In [39]: g.describe() Out[39]: A B 0 count 2.0 1.000000 mean 1.0 4.000000 std 0.0 NaN min 1.0 4.000000 25% 1.0 4.000000 50% 1.0 4.000000 75% 1.0 4.000000 ... ... ... 1 mean 5.0 7.000000 std 0.0 1.414214 min 5.0 6.000000 25% 5.0 6.500000 50% 5.0 7.000000 75% 5.0 7.500000 max 5.0 8.000000 [16 rows x 2 columns]
Allow specification of a more complex groupby via
pd.Grouper
, such as grouping by a Time and a string field simultaneously. See the docs. (GH3794)Better propagation/preservation of Series names when performing groupby operations:
SeriesGroupBy.agg
will ensure that the name attribute of the original series is propagated to the result (GH6265).- If the function provided to
GroupBy.apply
returns a named series, the name of the series will be kept as the name of the column index of the DataFrame returned byGroupBy.apply
(GH6124). This facilitatesDataFrame.stack
operations where the name of the column index is used as the name of the inserted column containing the pivoted data.
SQL¶
The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).
The functionality of providing DBAPI connection objects will only be supported
for sqlite3 in the future. The 'mysql'
flavor is deprecated.
The new functions read_sql_query()
and read_sql_table()
are introduced. The function read_sql()
is kept as a convenience
wrapper around the other two and will delegate to specific function depending on
the provided input (database table name or sql query).
In practice, you have to provide a SQLAlchemy engine
to the sql functions.
To connect with SQLAlchemy you use the create_engine()
function to create an engine
object from database URI. You only need to create the engine once per database you are
connecting to. For an in-memory sqlite database:
In [40]: from sqlalchemy import create_engine
# Create your connection.
In [41]: engine = create_engine('sqlite:///:memory:')
This engine
can then be used to write or read data to/from this database:
In [42]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})
In [43]: df.to_sql('db_table', engine, index=False)
You can read data from a database by specifying the table name:
In [44]: pd.read_sql_table('db_table', engine)
Out[44]:
A B
0 1 a
1 2 b
2 3 c
or by specifying a sql query:
In [45]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[45]:
A B
0 1 a
1 2 b
2 3 c
Some other enhancements to the sql functions include:
- support for writing the index. This can be controlled with the
index
keyword (default is True). - specify the column label to use when writing the index with
index_label
. - specify string columns to parse as datetimes withh the
parse_dates
keyword inread_sql_query()
andread_sql_table()
.
Warning
Some of the existing functions or function aliases have been deprecated
and will be removed in future versions. This includes: tquery
, uquery
,
read_frame
, frame_query
, write_frame
.
Warning
The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).
MultiIndexing Using Slicers¶
In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.
You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.
You can use slice(None)
to select all the contents of that level. You do not need to specify all the
deeper levels, they will be implied as slice(None)
.
As usual, both sides of the slicers are included as this is label indexing.
See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)
Warning
You should specify all axes in the .loc
specifier, meaning the indexer for the index and
for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted
as indexing both axes, rather than into say the MuliIndex for the rows.
You should do this:
df.loc[(slice('A1','A3'),.....),:]
rather than this:
df.loc[(slice('A1','A3'),.....)]
Warning
You will need to make sure that the selection axes are fully lexsorted!
In [46]: def mklbl(prefix,n):
....: return ["%s%s" % (prefix,i) for i in range(n)]
....:
In [47]: index = MultiIndex.from_product([mklbl('A',4),
....: mklbl('B',2),
....: mklbl('C',4),
....: mklbl('D',2)])
....:
In [48]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
....: ('b','foo'),('b','bah')],
....: names=['lvl0', 'lvl1'])
....:
In [49]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index),len(columns))),
....: index=index,
....: columns=columns).sortlevel().sortlevel(axis=1)
....:
In [50]: df
Out[50]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 9 8 11 10
D1 13 12 15 14
C2 D0 17 16 19 18
D1 21 20 23 22
C3 D0 25 24 27 26
... ... ... ... ...
A3 B1 C0 D1 229 228 231 230
C1 D0 233 232 235 234
D1 237 236 239 238
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 249 248 251 250
D1 253 252 255 254
[64 rows x 4 columns]
Basic multi-index slicing using slices, lists, and labels.
In [51]: df.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]
Out[51]:
lvl0 a b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74
D1 77 76 79 78
C3 D0 89 88 91 90
D1 93 92 95 94
B1 C1 D0 105 104 107 106
D1 109 108 111 110
C3 D0 121 120 123 122
... ... ... ... ...
A3 B0 C1 D1 205 204 207 206
C3 D0 217 216 219 218
D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[24 rows x 4 columns]
You can use a pd.IndexSlice
to shortcut the creation of these slices
In [52]: idx = pd.IndexSlice
In [53]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[53]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
D1 12 14
C3 D0 24 26
D1 28 30
B1 C1 D0 40 42
D1 44 46
C3 D0 56 58
... ... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]
It is possible to perform quite complicated selections using this method on multiple axes at the same time.
In [54]: df.loc['A1',(slice(None),'foo')]
Out[54]:
lvl0 a b
lvl1 foo foo
B0 C0 D0 64 66
D1 68 70
C1 D0 72 74
D1 76 78
C2 D0 80 82
D1 84 86
C3 D0 88 90
... ... ...
B1 C0 D1 100 102
C1 D0 104 106
D1 108 110
C2 D0 112 114
D1 116 118
C3 D0 120 122
D1 124 126
[16 rows x 2 columns]
In [55]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[55]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
D1 12 14
C3 D0 24 26
D1 28 30
B1 C1 D0 40 42
D1 44 46
C3 D0 56 58
... ... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]
Using a boolean indexer you can provide selection related to the values.
In [56]: mask = df[('a','foo')]>200
In [57]: df.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]
Out[57]:
lvl0 a b
lvl1 foo foo
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
You can also specify the axis
argument to .loc
to interpret the passed
slicers on a single axis.
In [58]: df.loc(axis=0)[:,:,['C1','C3']]
Out[58]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 9 8 11 10
D1 13 12 15 14
C3 D0 25 24 27 26
D1 29 28 31 30
B1 C1 D0 41 40 43 42
D1 45 44 47 46
C3 D0 57 56 59 58
... ... ... ... ...
A3 B0 C1 D1 205 204 207 206
C3 D0 217 216 219 218
D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[32 rows x 4 columns]
Furthermore you can set the values using these methods
In [59]: df2 = df.copy()
In [60]: df2.loc(axis=0)[:,:,['C1','C3']] = -10
In [61]: df2
Out[61]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10
C2 D0 17 16 19 18
D1 21 20 23 22
C3 D0 -10 -10 -10 -10
... ... ... ... ...
A3 B1 C0 D1 229 228 231 230
C1 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10
[64 rows x 4 columns]
You can use a right-hand-side of an alignable object as well.
In [62]: df2 = df.copy()
In [63]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000
In [64]: df2
Out[64]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
D1 5 4 7 6
C1 D0 9000 8000 11000 10000
D1 13000 12000 15000 14000
C2 D0 17 16 19 18
D1 21 20 23 22
C3 D0 25000 24000 27000 26000
... ... ... ... ...
A3 B1 C0 D1 229 228 231 230
C1 D0 233000 232000 235000 234000
D1 237000 236000 239000 238000
C2 D0 241 240 243 242
D1 245 244 247 246
C3 D0 249000 248000 251000 250000
D1 253000 252000 255000 254000
[64 rows x 4 columns]
Plotting¶
Hexagonal bin plots from
DataFrame.plot
withkind='hexbin'
(GH5478), See the docs.DataFrame.plot
andSeries.plot
now supports area plot with specifyingkind='area'
(GH6656), See the docsPie plots from
Series.plot
andDataFrame.plot
withkind='pie'
(GH6976), See the docs.Plotting with Error Bars is now supported in the
.plot
method ofDataFrame
andSeries
objects (GH3796, GH6834), See the docs.DataFrame.plot
andSeries.plot
now support atable
keyword for plottingmatplotlib.Table
, See the docs. Thetable
keyword can receive the following values.False
: Do nothing (default).True
: Draw a table using theDataFrame
orSeries
calledplot
method. Data will be transposed to meet matplotlib’s default layout.DataFrame
orSeries
: Draw matplotlib.table using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper functionpandas.tools.plotting.table
is added to create a table fromDataFrame
andSeries
, and add it to anmatplotlib.Axes
.
plot(legend='reverse')
will now reverse the order of legend labels for most plot kinds. (GH6014)Line plot and area plot can be stacked by
stacked=True
(GH6656)Following keywords are now acceptable for
DataFrame.plot()
withkind='bar'
andkind='barh'
:- width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot be overwritten. (GH6604)
- align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions, pandas passes align=’edge’ to matplotlib and adjust the location to center by itself, and it results align keyword is not applied as expected. (GH4525)
- position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end). Default is 0.5 (center). (GH6604)
Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 ...). This is intended to make bar plot be located on the same coodinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim, set_ylim, etc. In this cases, please modify your script to meet with new coordinates.
The
parallel_coordinates()
function now takes argumentcolor
instead ofcolors
. AFutureWarning
is raised to alert that the oldcolors
argument will not be supported in a future release. (GH6956)The
parallel_coordinates()
andandrews_curves()
functions now take positional argumentframe
instead ofdata
. AFutureWarning
is raised if the olddata
argument is used by name. (GH6956)DataFrame.boxplot()
now supportslayout
keyword (GH6769)DataFrame.boxplot()
has a new keyword argument, return_type. It accepts'dict'
,'axes'
, or'both'
, in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.
Prior Version Deprecations/Changes¶
There are prior version deprecations that are taking effect as of 0.14.0.
- Remove
DateRange
in favor ofDatetimeIndex
(GH6816) - Remove
column
keyword fromDataFrame.sort
(GH4370) - Remove
precision
keyword fromset_eng_float_format()
(GH395) - Remove
force_unicode
keyword fromDataFrame.to_string()
,DataFrame.to_latex()
, andDataFrame.to_html()
; these function encode in unicode by default (GH2224, GH2225) - Remove
nanRep
keyword fromDataFrame.to_csv()
andDataFrame.to_string()
(GH275) - Remove
unique
keyword fromHDFStore.select_column()
(GH3256) - Remove
inferTimeRule
keyword fromTimestamp.offset()
(GH391) - Remove
name
keyword fromget_data_yahoo()
andget_data_google()
( commit b921d1a ) - Remove
offset
keyword fromDatetimeIndex
constructor ( commit 3136390 ) - Remove
time_rule
from several rolling-moment statistical functions, such asrolling_sum()
(GH1042) - Removed neg
-
boolean operations on numpy arrays in favor of inv~
, as this is going to be deprecated in numpy 1.9 (GH6960)
Deprecations¶
The
pivot_table()
/DataFrame.pivot_table()
andcrosstab()
functions now take argumentsindex
andcolumns
instead ofrows
andcols
. AFutureWarning
is raised to alert that the oldrows
andcols
arguments will not be supported in a future release (GH5505)The
DataFrame.drop_duplicates()
andDataFrame.duplicated()
methods now take argumentsubset
instead ofcols
to better align withDataFrame.dropna()
. AFutureWarning
is raised to alert that the oldcols
arguments will not be supported in a future release (GH6680)The
DataFrame.to_csv()
andDataFrame.to_excel()
functions now takes argumentcolumns
instead ofcols
. AFutureWarning
is raised to alert that the oldcols
arguments will not be supported in a future release (GH6645)Indexers will warn
FutureWarning
when used with a scalar indexer and a non-floating point Index (GH4892, GH6960)# non-floating point indexes can only be indexed by integers / labels In [1]: Series(1,np.arange(5))[3.0] pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point Out[1]: 1 In [2]: Series(1,np.arange(5)).iloc[3.0] pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point Out[2]: 1 In [3]: Series(1,np.arange(5)).iloc[3.0:4] pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers and not floating point Out[3]: 3 1 dtype: int64 # these are Float64Indexes, so integer or floating point is acceptable In [4]: Series(1,np.arange(5.))[3] Out[4]: 1 In [5]: Series(1,np.arange(5.))[3.0] Out[6]: 1
Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)
Panel.shift()
now has a function signature that matchesDataFrame.shift()
. The old positional argumentlags
has been changed to a keyword argumentperiods
with a default value of 1. AFutureWarning
is raised if the old argumentlags
is used by name. (GH6910)The
order
keyword argument offactorize()
will be removed. (GH6926).Remove the
copy
keyword fromDataFrame.xs()
,Panel.major_xs()
,Panel.minor_xs()
. A view will be returned if possible, otherwise a copy will be made. Previously the user could think thatcopy=False
would ALWAYS return a view. (GH6894)The
parallel_coordinates()
function now takes argumentcolor
instead ofcolors
. AFutureWarning
is raised to alert that the oldcolors
argument will not be supported in a future release. (GH6956)The
parallel_coordinates()
andandrews_curves()
functions now take positional argumentframe
instead ofdata
. AFutureWarning
is raised if the olddata
argument is used by name. (GH6956)The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).
The following
io.sql
functions have been deprecated:tquery
,uquery
,read_frame
,frame_query
,write_frame
.The percentile_width keyword argument in
describe()
has been deprecated. Use the percentiles keyword instead, which takes a list of percentiles to display. The default output is unchanged.The default return type of
boxplot()
will change from a dict to a matpltolib Axes in a future release. You can use the future behavior now by passingreturn_type='axes'
to boxplot.
Enhancements¶
DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)
In [65]: Series({('a', 'b'): 1, ('a', 'a'): 0, ....: ('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4}) ....: Out[65]: a a 0 b 1 c 2 b a 3 b 4 dtype: int64 In [66]: DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2}, ....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4}, ....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6}, ....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8}, ....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}}) ....: Out[66]: a b a b c a b A B 4.0 1.0 5.0 8.0 10.0 C 3.0 2.0 6.0 7.0 NaN D NaN NaN NaN NaN 9.0
Added the
sym_diff
method toIndex
(GH5543)DataFrame.to_latex
now takes a longtable keyword, which if True will return a table in a longtable environment. (GH6617)Add option to turn off escaping in
DataFrame.to_latex
(GH6472)pd.read_clipboard
will, if the keywordsep
is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)
See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.
In [67]: household = DataFrame(dict(household_id = [1,2,3], ....: male = [0,1,0], ....: wealth = [196087.3,316478.7,294750]), ....: columns = ['household_id','male','wealth'] ....: ).set_index('household_id') ....: In [68]: household Out[68]: male wealth household_id 1 0 196087.3 2 1 316478.7 3 0 294750.0 In [69]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4], ....: asset_id = ["nl0000301109","nl0000289783","gb00b03mlx29", ....: "gb00b03mlx29","lu0197800237","nl0000289965",np.nan], ....: name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell", ....: "AAB Eastern Europe Equity Fund","Postbank BioTech Fonds",np.nan], ....: share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]), ....: columns = ['household_id','asset_id','name','share'] ....: ).set_index(['household_id','asset_id']) ....: In [70]: portfolio Out[70]: name share household_id asset_id 1 nl0000301109 ABN Amro 1.00 2 nl0000289783 Robeco 0.40 gb00b03mlx29 Royal Dutch Shell 0.60 3 gb00b03mlx29 Royal Dutch Shell 0.15 lu0197800237 AAB Eastern Europe Equity Fund 0.60 nl0000289965 Postbank BioTech Fonds 0.25 4 NaN NaN 1.00 In [71]: household.join(portfolio, how='inner') Out[71]: male wealth name \ household_id asset_id 1 nl0000301109 0 196087.3 ABN Amro 2 nl0000289783 1 316478.7 Robeco gb00b03mlx29 1 316478.7 Royal Dutch Shell 3 gb00b03mlx29 0 294750.0 Royal Dutch Shell lu0197800237 0 294750.0 AAB Eastern Europe Equity Fund nl0000289965 0 294750.0 Postbank BioTech Fonds share household_id asset_id 1 nl0000301109 1.00 2 nl0000289783 0.40 gb00b03mlx29 0.60 3 gb00b03mlx29 0.15 lu0197800237 0.60 nl0000289965 0.25
quotechar
,doublequote
, andescapechar
can now be specified when usingDataFrame.to_csv
(GH5414, GH4528)Partially sort by only the specified levels of a MultiIndex with the
sort_remaining
boolean kwarg. (GH3984)Added
to_julian_date
toTimeStamp
andDatetimeIndex
. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)DataFrame.to_stata
will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)DataFrame.to_stata
andStataWriter
will accept keyword arguments time_stamp and data_label which allow the time stamp and dataset label to be set when creating a file. (GH6545)pandas.io.gbq
now handles reading unicode strings properly. (GH5940)Holidays Calendars are now available and can be used with the
CustomBusinessDay
offset (GH6719)Float64Index
is now backed by afloat64
dtype ndarray instead of anobject
dtype array (GH6471).Implemented
Panel.pct_change
(GH6904)Added
how
option to rolling-moment functions to dictate how to handle resampling;rolling_max()
defaults to max,rolling_min()
defaults to min, and all others default to mean (GH6297)CustomBuisnessMonthBegin
andCustomBusinessMonthEnd
are now available (GH6866)Series.quantile()
andDataFrame.quantile()
now accept an array of quantiles.describe()
now accepts an array of percentiles to include in the summary statistics (GH4196)pivot_table
can now acceptGrouper
byindex
andcolumns
keywords (GH6913)In [72]: import datetime In [73]: df = DataFrame({ ....: 'Branch' : 'A A A A A B'.split(), ....: 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(), ....: 'Quantity': [1, 3, 5, 1, 8, 1], ....: 'Date' : [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,1,13,5), ....: datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,2,10,0), ....: datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,2,10,0)], ....: 'PayDay' : [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,10,15,13,5), ....: datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,11,2,10,0), ....: datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,9,5,10,0)]}) ....: In [74]: df Out[74]: Branch Buyer Date PayDay Quantity 0 A Carl 2013-11-01 13:00:00 2013-10-04 00:00:00 1 1 A Mark 2013-09-01 13:05:00 2013-10-15 13:05:00 3 2 A Carl 2013-10-01 20:00:00 2013-09-05 20:00:00 5 3 A Carl 2013-10-02 10:00:00 2013-11-02 10:00:00 1 4 A Joe 2013-11-01 20:00:00 2013-10-07 20:00:00 8 5 B Joe 2013-10-02 10:00:00 2013-09-05 10:00:00 1 In [75]: pivot_table(df, index=Grouper(freq='M', key='Date'), ....: columns=Grouper(freq='M', key='PayDay'), ....: values='Quantity', aggfunc=np.sum) ....: Out[75]: PayDay 2013-09-30 2013-10-31 2013-11-30 Date 2013-09-30 NaN 3.0 NaN 2013-10-31 6.0 NaN 1.0 2013-11-30 NaN 9.0 NaN
Arrays of strings can be wrapped to a specified width (
str.wrap
) (GH6999)Add
nsmallest()
andSeries.nlargest()
methods to Series, See the docs (GH3960)PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)
In [76]: prng = period_range('2013-01-01 09:00', periods=100, freq='H') In [77]: ps = Series(np.random.randn(len(prng)), index=prng) In [78]: ps Out[78]: 2013-01-01 09:00 0.015696 2013-01-01 10:00 -2.242685 2013-01-01 11:00 1.150036 2013-01-01 12:00 0.991946 2013-01-01 13:00 0.953324 2013-01-01 14:00 -2.021255 2013-01-01 15:00 -0.334077 ... 2013-01-05 06:00 0.566534 2013-01-05 07:00 0.503592 2013-01-05 08:00 0.285296 2013-01-05 09:00 0.484288 2013-01-05 10:00 1.363482 2013-01-05 11:00 -0.781105 2013-01-05 12:00 -0.468018 Freq: H, dtype: float64 In [79]: ps['2013-01-02'] Out[79]: 2013-01-02 00:00 0.553439 2013-01-02 01:00 1.318152 2013-01-02 02:00 -0.469305 2013-01-02 03:00 0.675554 2013-01-02 04:00 -1.817027 2013-01-02 05:00 -0.183109 2013-01-02 06:00 1.058969 ... 2013-01-02 17:00 0.076200 2013-01-02 18:00 -0.566446 2013-01-02 19:00 0.036142 2013-01-02 20:00 -2.074978 2013-01-02 21:00 0.247792 2013-01-02 22:00 -0.897157 2013-01-02 23:00 -0.136795 Freq: H, dtype: float64
read_excel
can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)pd.stats.moments.rolling_var
now uses Welford’s method for increased numerical stability (GH6817)pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)
DataFrame.rank()
now has a percentage rank option (GH5971)Series.rank()
now has a percentage rank option (GH5971)Series.rank()
andDataFrame.rank()
now acceptmethod='dense'
for ranks without gaps (GH6514)Support passing
encoding
with xlwt (GH3710)Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745, GH6988).
Testing statements updated to use specialized asserts (GH6175)
Performance¶
- Performance improvement when converting
DatetimeIndex
to floating ordinals usingDatetimeConverter
(GH6636) - Performance improvement for
DataFrame.shift
(GH5609) - Performance improvement in indexing into a multi-indexed Series (GH5567)
- Performance improvements in single-dtyped indexing (GH6484)
- Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
- Improve performance of
CustomBusinessDay
(GH6584) - improve performance of slice indexing on Series with string keys (GH6341, GH6372)
- Performance improvement for
DataFrame.from_records
when reading a specified number of rows from an iterable (GH6700) - Performance improvements in timedelta conversions for integer dtypes (GH6754)
- Improved performance of compatible pickles (GH6899)
- Improve performance in certain reindexing operations by optimizing
take_2d
(GH6749) GroupBy.count()
is now implemented in Cython and is much faster for large numbers of groups (GH7016).
Experimental¶
There are no experimental changes in 0.14.0
Bug Fixes¶
- Bug in Series ValueError when index doesn’t match data (GH6532)
- Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
- Bug in
pd.DataFrame.sort_index
where mergesort wasn’t stable whenascending=False
(GH6399) - Bug in
pd.tseries.frequencies.to_offset
when argument has leading zeroes (GH6391) - Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
- Inconsistent tz parsing
Timestamp
/to_datetime
for current year (GH5958) - Indexing bugs with reordered indexes (GH6252, GH6254)
- Bug in
.xs
with a Series multiindex (GH6258, GH5684) - Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
- Bug in
eval
where type-promotion failed for large expressions (GH6205) - Bug in interpolate with
inplace=True
(GH6281) HDFStore.remove
now handles start and stop (GH6177)HDFStore.select_as_multiple
handles start and stop the same way asselect
(GH6177)HDFStore.select_as_coordinates
andselect_column
works with awhere
clause that results in filters (GH6177)- Regression in join of non_unique_indexes (GH6329)
- Issue with groupby
agg
with a single function and a a mixed-type frame (GH6337) - Bug in
DataFrame.replace()
when passing a non-bool
to_replace
argument (GH6332) - Raise when trying to align on different levels of a multi-index assignment (GH3738)
- Bug in setting complex dtypes via boolean indexing (GH6345)
- Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid results. (GH4161)
- Bug in index name propogation in TimeGrouper/resample (GH4161)
- TimeGrouper has a more compatible API to the rest of the groupers (e.g.
groups
was missing) (GH3881) - Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
- Bug in
pd.eval
when parsing strings with possible tokens like'&'
(GH6351) - Bug correctly handle placements of
-inf
in Panels when dividing by integer 0 (GH6178) DataFrame.shift
withaxis=1
was raising (GH6371)- Disabled clipboard tests until release time (run locally with
nosetests -A disabled
) (GH6048). - Bug in
DataFrame.replace()
when passing a nesteddict
that contained keys not in the values to be replaced (GH6342) str.match
ignored the na flag (GH6609).- Bug in take with duplicate columns that were not consolidated (GH6240)
- Bug in interpolate changing dtypes (GH6290)
- Bug in
Series.get
, was using a buggy access method (GH6383) - Bug in hdfstore queries of the form
where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))]
(GH6313) - Bug in
DataFrame.dropna
with duplicate indices (GH6355) - Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
Float64Index
with nans not comparing correctly (GH6401)eval
/query
expressions with strings containing the@
character will now work (GH6366).- Bug in
Series.reindex
when specifying amethod
with some nan values was inconsistent (noted on a resample) (GH6418) - Bug in
DataFrame.replace()
where nested dicts were erroneously depending on the order of dictionary keys and values (GH5338). - Perf issue in concatting with empty objects (GH3259)
- Clarify sorting of
sym_diff
onIndex
objects withNaN
values (GH6444) - Regression in
MultiIndex.from_product
with aDatetimeIndex
as input (GH6439) - Bug in
str.extract
when passed a non-default index (GH6348) - Bug in
str.split
when passedpat=None
andn=1
(GH6466) - Bug in
io.data.DataReader
when passed"F-F_Momentum_Factor"
anddata_source="famafrench"
(GH6460) - Bug in
sum
of atimedelta64[ns]
series (GH6462) - Bug in
resample
with a timezone and certain offsets (GH6397) - Bug in
iat/iloc
with duplicate indices on a Series (GH6493) - Bug in
read_html
where nan’s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129). - Bug in
read_html
tests where redirected invalid URLs would make one test fail (GH6445). - Bug in multi-axis indexing using
.loc
on non-unique indices (GH6504) - Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)
- Regression from 0.13 in the treatment of numpy
datetime64
non-ns dtypes in Series creation (GH6529) .names
attribute of MultiIndexes passed toset_index
are now preserved (GH6459).- Bug in setitem with a duplicate index and an alignable rhs (GH6541)
- Bug in setitem with
.loc
on mixed integer Indexes (GH6546) - Bug in
pd.read_stata
which would use the wrong data types and missing values (GH6327) - Bug in
DataFrame.to_stata
that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335) StataWriter
replaces missing values in string columns by empty string (GH6802)- Inconsistent types in
Timestamp
addition/subtraction (GH6543) - Bug in preserving frequency across Timestamp addition/subtraction (GH4547)
- Bug in empty list lookup caused
IndexError
exceptions (GH6536, GH6551) Series.quantile
raising on anobject
dtype (GH6555)- Bug in
.xs
with anan
in level when dropped (GH6574) - Bug in fillna with
method='bfill/ffill'
anddatetime64[ns]
dtype (GH6587) - Bug in sql writing with mixed dtypes possibly leading to data loss (GH6509)
- Bug in
Series.pop
(GH6600) - Bug in
iloc
indexing when positional indexer matchedInt64Index
of the corresponding axis and no reordering happened (GH6612) - Bug in
fillna
withlimit
andvalue
specified - Bug in
DataFrame.to_stata
when columns have non-string names (GH4558) - Bug in compat with
np.compress
, surfaced in (GH6658) - Bug in binary operations with a rhs of a Series not aligning (GH6681)
- Bug in
DataFrame.to_stata
which incorrectly handles nan values and ignoreswith_index
keyword argument (GH6685) - Bug in resample with extra bins when using an evenly divisible frequency (GH4076)
- Bug in consistency of groupby aggregation when passing a custom function (GH6715)
- Bug in resample when
how=None
resample freq is the same as the axis frequency (GH5955) - Bug in downcasting inference with empty arrays (GH6733)
- Bug in
obj.blocks
on sparse containers dropping all but the last items of same for dtype (GH6748) - Bug in unpickling
NaT (NaTType)
(GH4606) - Bug in
DataFrame.replace()
where regex metacharacters were being treated as regexs even whenregex=False
(GH6777). - Bug in timedelta ops on 32-bit platforms (GH6808)
- Bug in setting a tz-aware index directly via
.index
(GH6785) - Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
- Bug in Makefile where it didn’t remove Cython generated C files with
make clean
(GH6768) - Bug with numpy < 1.7.2 when reading long strings from
HDFStore
(GH6166) - Bug in
DataFrame._reduce
where non bool-like (0/1) integers were being coverted into bools. (GH6806) - Regression from 0.13 with
fillna
and a Series on datetime-like (GH6344) - Bug in adding
np.timedelta64
toDatetimeIndex
with timezone outputs incorrect results (GH6818) - Bug in
DataFrame.replace()
where changing a dtype through replacement would only replace the first occurrence of a value (GH6689) - Better error message when passing a frequency of ‘MS’ in
Period
construction (GH5332) - Bug in
Series.__unicode__
whenmax_rows=None
and the Series has more than 1000 rows. (GH6863) - Bug in
groupby.get_group
where a datetlike wasn’t always accepted (GH5267) - Bug in
groupBy.get_group
created byTimeGrouper
raisesAttributeError
(GH6914) - Bug in
DatetimeIndex.tz_localize
andDatetimeIndex.tz_convert
convertingNaT
incorrectly (GH5546) - Bug in arithmetic operations affecting
NaT
(GH6873) - Bug in
Series.str.extract
where the resultingSeries
from a single group match wasn’t renamed to the group name - Bug in
DataFrame.to_csv
where settingindex=False
ignored theheader
kwarg (GH6186) - Bug in
DataFrame.plot
andSeries.plot
, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6678) - Internal tests for patching
__finalize__
/ bug in merge not finalizing (GH6923, GH6927) - accept
TextFileReader
inconcat
, which was affecting a common user idiom (GH6583) - Bug in C parser with leading whitespace (GH3374)
- Bug in C parser with
delim_whitespace=True
and\r
-delimited lines - Bug in python parser with explicit multi-index in row following column header (GH6893)
- Bug in
Series.rank
andDataFrame.rank
that caused small floats (<1e-13) to all receive the same rank (GH6886) - Bug in
DataFrame.apply
with functions that used *args`` or **kwargs and returned an empty result (GH6952) - Bug in sum/mean on 32-bit platforms on overflows (GH6915)
- Moved
Panel.shift
toNDFrame.slice_shift
and fixed to respect multiple dtypes. (GH6959) - Bug in enabling
subplots=True
inDataFrame.plot
only has single column raisesTypeError
, andSeries.plot
raisesAttributeError
(GH6951) - Bug in
DataFrame.plot
draws unnecessary axes when enablingsubplots
andkind=scatter
(GH6951) - Bug in
read_csv
from a filesystem with non-utf-8 encoding (GH6807) - Bug in
iloc
when setting / aligning (GH6766) - Bug causing UnicodeEncodeError when get_dummies called with unicode values and a prefix (GH6885)
- Bug in timeseries-with-frequency plot cursor display (GH5453)
- Bug surfaced in
groupby.plot
when using aFloat64Index
(GH7025) - Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
- Bug in
parallel_coordinates
andradviz
where reordering of class column caused possible color/class mismatch (GH6956) - Bug in
radviz
andandrews_curves
where multiple values of ‘color’ were being passed to plotting method (GH6956) - Bug in
Float64Index.isin()
where containingnan
s would make indices claim that they contained all the things (GH7066). - Bug in
DataFrame.boxplot
where it failed to use the axis passed as theax
argument (GH3578) - Bug in the
XlsxWriter
andXlwtWriter
implementations that resulted in datetime columns being formatted without the time (GH7075) were being passed to plotting method read_fwf()
treatsNone
incolspec
like regular python slices. It now reads from the beginning or until the end of the line whencolspec
contains aNone
(previously raised aTypeError
)- Bug in cache coherence with chained indexing and slicing; add
_is_view
property toNDFrame
to correctly predict views; markis_copy
onxs
only if its an actual copy (and not a view) (GH7084) - Bug in DatetimeIndex creation from string ndarray with
dayfirst=True
(GH5917) - Bug in
MultiIndex.from_arrays
created fromDatetimeIndex
doesn’t preservefreq
andtz
(GH7090) - Bug in
unstack
raisesValueError
whenMultiIndex
containsPeriodIndex
(GH4342) - Bug in
boxplot
andhist
draws unnecessary axes (GH6769) - Regression in
groupby.nth()
for out-of-bounds indexers (GH6621) - Bug in
quantile
with datetime values (GH6965) - Bug in
Dataframe.set_index
,reindex
andpivot
don’t preserveDatetimeIndex
andPeriodIndex
attributes (GH3950, GH5878, GH6631) - Bug in
MultiIndex.get_level_values
doesn’t preserveDatetimeIndex
andPeriodIndex
attributes (GH7092) - Bug in
Groupby
doesn’t preservetz
(GH3950) - Bug in
PeriodIndex
partial string slicing (GH6716) - Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to ‘info’ (GH7105)
- Bug in
DatetimeIndex
specifyingfreq
raisesValueError
when passed value is too short (GH7098) - Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
- Bug
PeriodIndex
string slicing with out of bounds values (GH5407) - Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
- Bug in
isnull
when applied to 0-dimensional object arrays (GH7176) - Bug in
query
/eval
where global constants were not looked up correctly (GH7178) - Bug in recognizing out-of-bounds positional list indexers with
iloc
and a multi-axis tuple indexer (GH7189) - Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)
- Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
- Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)
- Fix a bug where invalid eval/query operations would blow the stack (GH5198)
v0.13.1 (February 3, 2014)¶
This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
- Added
infer_datetime_format
keyword toread_csv/to_datetime
to allow speedups for homogeneously formatted datetimes. - Will intelligently limit display precision for datetime/timedelta formats.
- Enhanced Panel
apply()
method. - Suggested tutorials in new Tutorials section.
- Our pandas ecosystem is growing, We now feature related projects in a new Pandas Ecosystem section.
- Much work has been taking place on improving the docs, and a new Contributing section has been added.
- Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.
Warning
0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.
This would previously segfault:
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [2]: df['A'].iloc[0] = np.nan
In [3]: df
Out[3]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar
The recommended way to do this type of assignment is:
In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [5]: df.ix[0,'A'] = np.nan
In [6]: df
Out[6]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar
Output Formatting Enhancements¶
df.info() view now display dtype info per column (GH5682)
df.info() now honors the option
max_info_rows
, to disable null counts for large frames (GH5974)In [7]: max_info_rows = pd.get_option('max_info_rows') In [8]: df = DataFrame(dict(A = np.random.randn(10), ...: B = np.random.randn(10), ...: C = date_range('20130101',periods=10))) ...: In [9]: df.iloc[3:6,[0,2]] = np.nan
# set to not display the null counts In [10]: pd.set_option('max_info_rows',0) In [11]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 3 columns): A float64 B float64 C datetime64[ns] dtypes: datetime64[ns](1), float64(2) memory usage: 312.0 bytes
# this is the default (same as in 0.13.0) In [12]: pd.set_option('max_info_rows',max_info_rows) In [13]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 3 columns): A 7 non-null float64 B 10 non-null float64 C 7 non-null datetime64[ns] dtypes: datetime64[ns](1), float64(2) memory usage: 312.0 bytes
Add
show_dimensions
display option for the new DataFrame repr to control whether the dimensions print.In [14]: df = DataFrame([[1, 2], [3, 4]]) In [15]: pd.set_option('show_dimensions', False) In [16]: df Out[16]: 0 1 0 1 2 1 3 4 In [17]: pd.set_option('show_dimensions', True) In [18]: df Out[18]: 0 1 0 1 2 1 3 4 [2 rows x 2 columns]
The
ArrayFormatter
fordatetime
andtimedelta64
now intelligently limit precision based on the values in the array (GH3401)Previously output might look like:
age today diff 0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00 1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00
Now the output looks like:
In [19]: df = DataFrame([ Timestamp('20010101'), ....: Timestamp('20040601') ], columns=['age']) ....: In [20]: df['today'] = Timestamp('20130419') In [21]: df['diff'] = df['today']-df['age'] In [22]: df Out[22]: age today diff 0 2001-01-01 2013-04-19 4491 days 1 2004-06-01 2013-04-19 3244 days [2 rows x 3 columns]
API changes¶
Add
-NaN
and-nan
to the default set of NA values (GH5952). See NA Values.Added
Series.str.get_dummies
vectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:In [23]: s = Series(['a', 'a|b', np.nan, 'a|c']) In [24]: s.str.get_dummies(sep='|') Out[24]: a b c 0 1 0 0 1 1 1 0 2 0 0 0 3 1 0 1 [4 rows x 3 columns]
Added the
NDFrame.equals()
method to compare if two NDFrames are equal have equal axes, dtypes, and values. Added thearray_equivalent
function to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also the docs for a motivating example.In [25]: df = DataFrame({'col':['foo', 0, np.nan]}) In [26]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0]) In [27]: df.equals(df2) Out[27]: False In [28]: df.equals(df2.sort()) Out[28]: True In [29]: import pandas.core.common as com In [30]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan])) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-30-69b4146d4c4c> in <module>() ----> 1 com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan])) AttributeError: 'module' object has no attribute 'array_equivalent' In [31]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan])) Out[31]: False
DataFrame.apply
will use thereduce
argument to determine whether aSeries
or aDataFrame
should be returned when theDataFrame
is empty (GH6007).Previously, calling
DataFrame.apply
an emptyDataFrame
would return either aDataFrame
if there were no columns, or the function being applied would be called with an emptySeries
to guess whether aSeries
orDataFrame
should be returned:In [32]: def applied_func(col): ....: print("Apply function being called with: ", col) ....: return col.sum() ....: In [33]: empty = DataFrame(columns=['a', 'b']) In [34]: empty.apply(applied_func) ('Apply function being called with: ', Series([], dtype: float64)) Out[34]: a NaN b NaN dtype: float64
Now, when
apply
is called on an emptyDataFrame
: if thereduce
argument isTrue
aSeries
will returned, if it isFalse
aDataFrame
will be returned, and if it isNone
(the default) the function being applied will be called with an empty series to try and guess the return type.In [35]: empty.apply(applied_func, reduce=True) Out[35]: a NaN b NaN dtype: float64 In [36]: empty.apply(applied_func, reduce=False) Out[36]: Empty DataFrame Columns: [a, b] Index: [] [0 rows x 2 columns]
Prior Version Deprecations/Changes¶
There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1
Deprecations¶
There are no deprecations of prior behavior in 0.13.1
Enhancements¶
pd.read_csv
andpd.to_datetime
learned a newinfer_datetime_format
keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)If
parse_dates
is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.# Try to infer the format for the index column df = pd.read_csv('foo.csv', index_col=0, parse_dates=True, infer_datetime_format=True)
date_format
anddatetime_format
keywords can now be specified when writing toexcel
files (GH4133)MultiIndex.from_product
convenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):In [37]: shades = ['light', 'dark'] In [38]: colors = ['red', 'green', 'blue'] In [39]: MultiIndex.from_product([shades, colors], names=['shade', 'color']) Out[39]: MultiIndex(levels=[[u'dark', u'light'], [u'blue', u'green', u'red']], labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]], names=[u'shade', u'color'])
Panel
apply()
will work on non-ufuncs. See the docs.In [40]: import pandas.util.testing as tm In [41]: panel = tm.makePanel(5) In [42]: panel Out[42]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: A to D In [43]: panel['ItemA'] Out[43]: A B C D 2000-01-03 0.694103 1.893534 -1.735349 -0.850346 2000-01-04 0.678630 0.639633 1.210384 1.176812 2000-01-05 0.239556 -0.962029 0.797435 -0.524336 2000-01-06 0.151227 -2.085266 -0.379811 0.700908 2000-01-07 0.816127 1.930247 0.702562 0.984188 [5 rows x 4 columns]
Specifying an
apply
that operates on a Series (to return a single element)In [44]: panel.apply(lambda x: x.dtype, axis='items') Out[44]: A B C D 2000-01-03 float64 float64 float64 float64 2000-01-04 float64 float64 float64 float64 2000-01-05 float64 float64 float64 float64 2000-01-06 float64 float64 float64 float64 2000-01-07 float64 float64 float64 float64 [5 rows x 4 columns]
A similar reduction type operation
In [45]: panel.apply(lambda x: x.sum(), axis='major_axis') Out[45]: ItemA ItemB ItemC A 2.579643 3.062757 0.379252 B 1.416120 -1.960855 0.923558 C 0.595222 -1.079772 -3.118269 D 1.487226 -0.734611 -1.979310 [4 rows x 3 columns]
This is equivalent to
In [46]: panel.sum('major_axis') Out[46]: ItemA ItemB ItemC A 2.579643 3.062757 0.379252 B 1.416120 -1.960855 0.923558 C 0.595222 -1.079772 -3.118269 D 1.487226 -0.734611 -1.979310 [4 rows x 3 columns]
A transformation operation that returns a Panel, but is computing the z-score across the major_axis
In [47]: result = panel.apply( ....: lambda x: (x-x.mean())/x.std(), ....: axis='major_axis') ....: In [48]: result Out[48]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: A to D In [49]: result['ItemA'] Out[49]: A B C D 2000-01-03 0.595800 0.907552 -1.556260 -1.244875 2000-01-04 0.544058 0.200868 0.915883 0.953747 2000-01-05 -0.924165 -0.701810 0.569325 -0.891290 2000-01-06 -1.219530 -1.334852 -0.418654 0.437589 2000-01-07 1.003837 0.928242 0.489705 0.744830 [5 rows x 4 columns]
Panel
apply()
operating on cross-sectional slabs. (GH1148)In [50]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T In [51]: result = panel.apply(f, axis = ['items','major_axis']) In [52]: result Out[52]: <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis) Items axis: A to D Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: ItemA to ItemC In [53]: result.loc[:,:,'ItemA'] Out[53]: A B C D 2000-01-03 0.331409 1.071034 -0.914540 -0.510587 2000-01-04 -0.741017 -0.118794 0.383277 0.537212 2000-01-05 0.065042 -0.767353 0.655436 0.069467 2000-01-06 0.027932 -0.569477 0.908202 0.610585 2000-01-07 1.116434 1.133591 0.871287 1.004064 [5 rows x 4 columns]
This is equivalent to the following
In [54]: result = Panel(dict([ (ax,f(panel.loc[:,:,ax])) ....: for ax in panel.minor_axis ])) ....: In [55]: result Out[55]: <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis) Items axis: A to D Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00 Minor_axis axis: ItemA to ItemC In [56]: result.loc[:,:,'ItemA'] Out[56]: A B C D 2000-01-03 0.331409 1.071034 -0.914540 -0.510587 2000-01-04 -0.741017 -0.118794 0.383277 0.537212 2000-01-05 0.065042 -0.767353 0.655436 0.069467 2000-01-06 0.027932 -0.569477 0.908202 0.610585 2000-01-07 1.116434 1.133591 0.871287 1.004064 [5 rows x 4 columns]
Performance¶
Performance improvements for 0.13.1
- Series datetime/timedelta binary operations (GH5801)
- DataFrame
count/dropna
foraxis=1
- Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- Series.str.extract (GH5944)
dtypes/ftypes
methods (GH5968)- indexing with object dtypes (GH5968)
DataFrame.apply
(GH6013)- Regression in JSON IO (GH5765)
- Index construction from Series (GH6150)
Experimental¶
There are no experimental changes in 0.13.1
Bug Fixes¶
See V0.13.1 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.1.
See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.
v0.13.0 (January 3, 2014)¶
This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements along with a large number of bug fixes.
Highlights include:
- support for a new index type
Float64Index
, and other Indexing enhancements HDFStore
has a new string based syntax for query specification- support for new methods of interpolation
- updated
timedelta
operations - a new string manipulation method
extract
- Nanosecond support for Offsets
isin
for DataFrames
Several experimental features are added, including:
- new
eval/query
methods for expression evaluation - support for
msgpack
serialization - an i/o interface to Google’s
BigQuery
Their are several new or updated docs sections including:
- Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.
- Comparison with R, idiom translations from R to pandas.
- Enhancing Performance, ways to enhance pandas performance with
eval/query
.
Warning
In 0.13.0 Series
has internally been refactored to no longer sub-class ndarray
but instead subclass NDFrame
, similar to the rest of the pandas containers. This should be
a transparent change with only very limited API implications. See Internal Refactoring
API changes¶
read_excel
now supports an integer in itssheetname
argument giving the index of the sheet to read in (GH4301).Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) as infinity. (GH4220, GH4219), affecting
read_table
,read_csv
, etc.pandas
now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’ssix
library into compat. (GH4384, GH4375, GH4372)pandas.util.compat
andpandas.util.py3compat
have been merged intopandas.compat
.pandas.compat
now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility.lmap
,lzip
,lrange
andlfilter
all produce lists instead of iterators, for compatibility withnumpy
, subscripting andpandas
constructors.(GH4384, GH4375, GH4372)Series.get
with negative indexers now returns the same as[]
(GH4390)Changes to how
Index
andMultiIndex
handle metadata (levels
,labels
, andnames
) (GH4039):# previously, you would have set levels or labels directly index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]] # now, you use the set_levels or set_labels methods index = index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]]) # similarly, for names, you can rename the object # but setting names is not deprecated index = index.set_names(["bob", "cranberry"]) # and all methods take an inplace kwarg - but return None index.set_names(["bob", "cranberry"], inplace=True)
All division with
NDFrame
objects is now truedivision, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use//
andfloordiv
to do integer division.Integer division
In [3]: arr = np.array([1, 2, 3, 4]) In [4]: arr2 = np.array([5, 3, 2, 1]) In [5]: arr / arr2 Out[5]: array([0, 0, 1, 4]) In [6]: Series(arr) // Series(arr2) Out[6]: 0 0 1 0 2 1 3 4 dtype: int64
True Division
In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required Out[7]: 0 0.200000 1 0.666667 2 1.500000 3 4.000000 dtype: float64
Infer and downcast dtype if
downcast='infer'
is passed tofillna/ffill/bfill
(GH4604)__nonzero__
for all NDFrame objects, will now raise aValueError
, this reverts back to (GH1073, GH4633) behavior. See gotchas for a more detailed discussion.This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all will raise a
ValueError
.if df: .... df1 and df2 s1 and s2
Added the
.bool()
method toNDFrame
objects to facilitate evaluating of single-element boolean Series:In [1]: Series([True]).bool() Out[1]: True In [2]: Series([False]).bool() Out[2]: False In [3]: DataFrame([[True]]).bool() Out[3]: True In [4]: DataFrame([[False]]).bool() Out[4]: False
All non-Index NDFrames (
Series
,DataFrame
,Panel
,Panel4D
,SparsePanel
, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.).SparsePanel
does not supportpow
ormod
with non-scalars. (GH3765)Series
andDataFrame
now have amode()
method to calculate the statistical mode(s) by axis/Series. (GH5367)Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the option
mode.chained_assignment
, allowed options areraise/warn/None
. See the docs.In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]}) In [6]: pd.set_option('chained_assignment','warn')
The following warning / exception will show if this is attempted.
In [7]: dfc.loc[0]['A'] = 1111
Traceback (most recent call last) ... SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead
Here is the correct method of assignment.
In [8]: dfc.loc[0,'A'] = 11 In [9]: dfc Out[9]: A B 0 11 1 1 bbb 2 2 ccc 3 [3 rows x 2 columns]
Panel.reindex
has the following call signaturePanel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
to conform with other
NDFrame
objects. See Internal Refactoring for more information.
Series.argmin
andSeries.argmax
are now aliased toSeries.idxmin
andSeries.idxmax
. These return the index of themin or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (GH6214)
Prior Version Deprecations/Changes¶
These were announced changes in 0.12 or prior that are taking effect as of 0.13.0
- Remove deprecated
Factor
(GH3650) - Remove deprecated
set_printoptions/reset_printoptions
(GH3046) - Remove deprecated
_verbose_info
(GH3215) - Remove deprecated
read_clipboard/to_clipboard/ExcelFile/ExcelWriter
frompandas.io.parsers
(GH3717) These are available as functions in the main pandas namespace (e.g.pd.read_clipboard
) - default for
tupleize_cols
is nowFalse
for bothto_csv
andread_csv
. Fair warning in 0.12 (GH3604) - default for display.max_seq_len is now 100 rather then None. This activates truncated display (”...”) of long sequences in various places. (GH3391)
Deprecations¶
Deprecated in 0.13.0
- deprecated
iterkv
, which will be removed in a future release (this was an alias of iteritems used to bypass2to3
‘s changes). (GH4384, GH4375, GH4372) - deprecated the string method
match
, whose role is now performed more idiomatically byextract
. In a future release, the default behavior ofmatch
will change to become analogous tocontains
, which returns a boolean indexer. (Their distinction is strictness:match
relies onre.match
whilecontains
relies onre.search
.) In this release, the deprecated behavior is the default, but the new behavior is available through the keyword argumentas_indexer=True
.
Indexing API Changes¶
Prior to 0.13, it was impossible to use a label indexer (.loc/.ix
) to set a value that
was not contained in the index of a particular axis. (GH2578). See the docs
In the Series
case this is effectively an appending operation
In [10]: s = Series([1,2,3])
In [11]: s
Out[11]:
0 1
1 2
2 3
dtype: int64
In [12]: s[5] = 5.
In [13]: s
Out[13]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
....: columns=['A','B'])
....:
In [15]: dfi
Out[15]:
A B
0 0 1
1 2 3
2 4 5
[3 rows x 2 columns]
This would previously KeyError
In [16]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [17]: dfi
Out[17]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
[3 rows x 3 columns]
This is like an append
operation.
In [18]: dfi.loc[3] = 5
In [19]: dfi
Out[19]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
[4 rows x 3 columns]
A Panel setting operation on an arbitrary axis aligns the input to the Panel
In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
....: items=['Item1','Item2'],
....: major_axis=pd.date_range('2001/1/12',periods=4),
....: minor_axis=['A','B'],dtype='float64')
....:
In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B
In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)
In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C
In [24]: p.loc[:,:,'C']
Out[24]:
Item1 Item2
2001-01-12 30.0 32.0
2001-01-13 30.0 32.0
2001-01-14 30.0 32.0
2001-01-15 30.0 32.0
[4 rows x 2 columns]
Float64Index API Change¶
Added a new index type,
Float64Index
. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes[],ix,loc
for scalar indexing and slicing work exactly the same. See the docs, (GH263)Construction is by default for floating type values.
In [25]: index = Index([1.5, 2, 3, 4.5, 5]) In [26]: index Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64') In [27]: s = Series(range(5),index=index) In [28]: s Out[28]: 1.5 0 2.0 1 3.0 2 4.5 3 5.0 4 dtype: int64
Scalar selection for
[],.ix,.loc
will always be label based. An integer will match an equal float index (e.g.3
is equivalent to3.0
)In [29]: s[3] Out[29]: 2 In [30]: s.ix[3] Out[30]: 2 In [31]: s.loc[3] Out[31]: 2
The only positional indexing is via
iloc
In [32]: s.iloc[3] Out[32]: 3
A scalar index that is not found will raise
KeyError
Slicing is ALWAYS on the values of the index, for
[],ix,loc
and ALWAYS positional withiloc
In [33]: s[2:4] Out[33]: 2.0 1 3.0 2 dtype: int64 In [34]: s.ix[2:4] Out[34]: 2.0 1 3.0 2 dtype: int64 In [35]: s.loc[2:4] Out[35]: 2.0 1 3.0 2 dtype: int64 In [36]: s.iloc[2:4] Out[36]: 3.0 2 4.5 3 dtype: int64
In float indexes, slicing using floats are allowed
In [37]: s[2.1:4.6] Out[37]: 3.0 2 4.5 3 dtype: int64 In [38]: s.loc[2.1:4.6] Out[38]: 3.0 2 4.5 3 dtype: int64
Indexing on other index types are preserved (and positional fallback for
[],ix
), with the exception, that floating point slicing on indexes on nonFloat64Index
will now raise aTypeError
.In [1]: Series(range(5))[3.5] TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index) In [1]: Series(range(5))[3.5:4.5] TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)
Using a scalar float indexer will be deprecated in a future version, but is allowed for now.
In [3]: Series(range(5))[3.0] Out[3]: 3
HDFStore API Changes¶
Query Format Changes. A much more string-like query format is now supported. See the docs.
In [39]: path = 'test.h5' In [40]: dfq = DataFrame(randn(10,4), ....: columns=list('ABCD'), ....: index=date_range('20130101',periods=10)) ....: In [41]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)
Use boolean expressions, with in-line function evaluation.
In [42]: read_hdf(path,'dfq', ....: where="index>Timestamp('20130104') & columns=['A', 'B']") ....: Out[42]: A B 2013-01-05 1.057633 -0.791489 2013-01-06 1.910759 0.787965 2013-01-07 1.043945 2.107785 2013-01-08 0.749185 -0.675521 2013-01-09 -0.276646 1.924533 2013-01-10 0.226363 -2.078618 [6 rows x 2 columns]
Use an inline column reference
In [43]: read_hdf(path,'dfq', ....: where="A>0 or C>0") ....: Out[43]: A B C D 2013-01-01 -0.414505 -1.425795 0.209395 -0.592886 2013-01-02 -1.473116 -0.896581 1.104352 -0.431550 2013-01-03 -0.161137 0.889157 0.288377 -1.051539 2013-01-04 -0.319561 -0.619993 0.156998 -0.571455 2013-01-05 1.057633 -0.791489 -0.524627 0.071878 2013-01-06 1.910759 0.787965 0.513082 -0.546416 2013-01-07 1.043945 2.107785 1.459927 1.015405 2013-01-08 0.749185 -0.675521 0.440266 0.688972 2013-01-09 -0.276646 1.924533 0.411204 0.890765 2013-01-10 0.226363 -2.078618 -0.387886 -0.087107 [10 rows x 4 columns]
the
format
keyword now replaces thetable
keyword; allowed values arefixed(f)
ortable(t)
the same defaults as prior < 0.13.0 remain, e.g.put
impliesfixed
format andappend
impliestable
format. This default format can be set as an option by settingio.hdf.default_format
.In [44]: path = 'test.h5' In [45]: df = DataFrame(randn(10,2)) In [46]: df.to_hdf(path,'df_table',format='table') In [47]: df.to_hdf(path,'df_table2',append=True) In [48]: df.to_hdf(path,'df_fixed') In [49]: with get_store(path) as store: ....: print(store) ....: <class 'pandas.io.pytables.HDFStore'> File path: test.h5 /df_fixed frame (shape->[10,2]) /df_table frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) /df_table2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
Significant table writing performance improvements
handle a passed
Series
in table format (GH4330)can now serialize a
timedelta64[ns]
dtype in a table (GH3577), See the docs.added an
is_open
property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)a close of a
HDFStore
now will close that instance of theHDFStore
but will only close the actual file if the ref count (byPyTables
) w.r.t. all of the open handles are 0. Essentially you have a local instance ofHDFStore
referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raiseClosedFileError
In [50]: path = 'test.h5' In [51]: df = DataFrame(randn(10,2)) In [52]: store1 = HDFStore(path) In [53]: store2 = HDFStore(path) In [54]: store1.append('df',df) In [55]: store2.append('df2',df) In [56]: store1 Out[56]: <class 'pandas.io.pytables.HDFStore'> File path: test.h5 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) In [57]: store2 Out[57]: <class 'pandas.io.pytables.HDFStore'> File path: test.h5 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) /df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) In [58]: store1.close() In [59]: store2 Out[59]: <class 'pandas.io.pytables.HDFStore'> File path: test.h5 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) /df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index]) In [60]: store2.close() In [61]: store2 Out[61]: <class 'pandas.io.pytables.HDFStore'> File path: test.h5 File is CLOSED
removed the
_quiet
attribute, replace by aDuplicateWarning
if retrieving duplicate rows from a table (GH4367)removed the
warn
argument fromopen
. Instead aPossibleDataLossError
exception will be raised if you try to usemode='w'
with an OPEN file handle (GH4367)allow a passed locations array or mask as a
where
condition (GH4467). See the docs for an example.add the keyword
dropna=True
toappend
to change whether ALL nan rows are not written to the store (default isTrue
, ALL nan rows are NOT written), also settable via the optionio.hdf.dropna_table
(GH4625)pass thru store creation arguments; can be used to support in-memory stores
DataFrame repr Changes¶
The HTML and plain text representations of DataFrame
now show
a truncated view of the table once it exceeds a certain size, rather
than switching to the short info view (GH4886, GH5550).
This makes the representation more consistent as small DataFrames get
larger.
To get the info view, call DataFrame.info()
. If you prefer the
info view as the repr for large DataFrames, you can set this by running
set_option('display.large_repr', 'info')
.
Enhancements¶
df.to_clipboard()
learned a newexcel
keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).read_html
now raises aURLError
instead of catching and raising aValueError
(GH4303, GH4305)Added a test for
read_clipboard()
andto_clipboard()
(GH4282)Clipboard functionality now works with PySide (GH4282)
Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)
to_dict
now takesrecords
as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)NaN
handing in get_dummies (GH4446) with dummy_na# previously, nan was erroneously counted as 2 here # now it is not counted at all In [62]: get_dummies([1, 2, np.nan]) Out[62]: 1.0 2.0 0 1 0 1 0 1 2 0 0 [3 rows x 2 columns] # unless requested In [63]: get_dummies([1, 2, np.nan], dummy_na=True) Out[63]: 1.0 2.0 NaN 0 1 0 0 1 0 1 0 2 0 0 1 [3 rows x 3 columns]
timedelta64[ns]
operations. See the docs.Warning
Most of these operations require
numpy >= 1.7
Using the new top-level
to_timedelta
, you can convert a scalar or array from the standard timedelta format (produced byto_csv
) into a timedelta type (np.timedelta64
innanoseconds
).In [64]: to_timedelta('1 days 06:05:01.00003') Out[64]: Timedelta('1 days 06:05:01.000030') In [65]: to_timedelta('15.5us') Out[65]: Timedelta('0 days 00:00:00.000015') In [66]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan']) Out[66]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) In [67]: to_timedelta(np.arange(5),unit='s') Out[67]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) In [68]: to_timedelta(np.arange(5),unit='d') Out[68]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)
A Series of dtype
timedelta64[ns]
can now be divided by anothertimedelta64[ns]
object, or astyped to yield afloat64
dtyped Series. This is frequency conversion. See the docs for the docs.In [69]: from datetime import timedelta In [70]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201',periods=4)) In [71]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3)) In [72]: td[3] = np.nan In [73]: td Out[73]: 0 31 days 00:00:00 1 31 days 00:00:00 2 31 days 00:05:03 3 NaT dtype: timedelta64[ns] # to days In [74]: td / np.timedelta64(1,'D') Out[74]: 0 31.000000 1 31.000000 2 31.003507 3 NaN dtype: float64 In [75]: td.astype('timedelta64[D]') Out[75]: 0 31.0 1 31.0 2 31.0 3 NaN dtype: float64 # to seconds In [76]: td / np.timedelta64(1,'s') Out[76]: 0 2678400.0 1 2678400.0 2 2678703.0 3 NaN dtype: float64 In [77]: td.astype('timedelta64[s]') Out[77]: 0 2678400.0 1 2678400.0 2 2678703.0 3 NaN dtype: float64
Dividing or multiplying a
timedelta64[ns]
Series by an integer or integer SeriesIn [78]: td * -1 Out[78]: 0 -31 days +00:00:00 1 -31 days +00:00:00 2 -32 days +23:54:57 3 NaT dtype: timedelta64[ns] In [79]: td * Series([1,2,3,4]) Out[79]: 0 31 days 00:00:00 1 62 days 00:00:00 2 93 days 00:15:09 3 NaT dtype: timedelta64[ns]
Absolute
DateOffset
objects can act equivalently totimedeltas
In [80]: from pandas import offsets In [81]: td + offsets.Minute(5) + offsets.Milli(5) Out[81]: 0 31 days 00:05:00.005000 1 31 days 00:05:00.005000 2 31 days 00:10:03.005000 3 NaT dtype: timedelta64[ns]
Fillna is now supported for timedeltas
In [82]: td.fillna(0) Out[82]: 0 31 days 00:00:00 1 31 days 00:00:00 2 31 days 00:05:03 3 0 days 00:00:00 dtype: timedelta64[ns] In [83]: td.fillna(timedelta(days=1,seconds=5)) Out[83]: 0 31 days 00:00:00 1 31 days 00:00:00 2 31 days 00:05:03 3 1 days 00:00:05 dtype: timedelta64[ns]
You can do numeric reduction operations on timedeltas.
In [84]: td.mean() Out[84]: Timedelta('31 days 00:01:41') In [85]: td.quantile(.1) Out[85]: Timedelta('31 days 00:00:00')
plot(kind='kde')
now accepts the optional parametersbw_method
andind
, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)DataFrame constructor now accepts a numpy masked record array (GH3478)
The new vectorized string method
extract
return regular expression matches more conveniently.In [86]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)') Out[86]: 0 1 1 2 2 NaN dtype: object
Elements that do not match return
NaN
. Extracting a regular expression with more than one group returns a DataFrame with one column per group.In [87]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)') Out[87]: 0 1 0 a 1 1 b 2 2 NaN NaN [3 rows x 2 columns]
Elements that do not match return a row of
NaN
. Thus, a Series of messy strings can be converted into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitatingget()
to access tuples orre.match
objects.Named groups like
In [88]: Series(['a1', 'b2', 'c3']).str.extract( ....: '(?P<letter>[ab])(?P<digit>\d)') ....: Out[88]: letter digit 0 a 1 1 b 2 2 NaN NaN [3 rows x 2 columns]
and optional groups can also be used.
In [89]: Series(['a1', 'b2', '3']).str.extract( ....: '(?P<letter>[ab])?(?P<digit>\d)') ....: Out[89]: letter digit 0 a 1 1 b 2 2 NaN 3 [3 rows x 2 columns]
read_stata
now accepts Stata 13 format (GH4291)read_fwf
now infers the column specifications from the first 100 rows of the file if the data has correctly separated and properly aligned columns using the delimiter provided to the function (GH4488).support for nanosecond times as an offset
Warning
These operations require
numpy >= 1.7
Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods in the nanosecond range are now available.
In [90]: date_range('2013-01-01', periods=5, freq='5N') Out[90]: DatetimeIndex(['2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01'], dtype='datetime64[ns]', freq='5N')
or with frequency as offset
In [91]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5)) Out[91]: DatetimeIndex(['2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01'], dtype='datetime64[ns]', freq='5N')
Timestamps can be modified in the nanosecond range
In [92]: t = Timestamp('20130101 09:01:02') In [93]: t + pd.datetools.Nano(123) Out[93]: Timestamp('2013-01-01 09:01:02.000000123')
A new method,
isin
for DataFrames, which plays nicely with boolean indexing. The argument toisin
, what we’re comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.To get the rows where any of the conditions are met:
In [94]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']}) In [95]: dfi Out[95]: A B 0 1 a 1 2 b 2 3 f 3 4 n [4 rows x 2 columns] In [96]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']}) In [97]: mask = dfi.isin(other) In [98]: mask Out[98]: A B 0 True False 1 False False 2 True True 3 False False [4 rows x 2 columns] In [99]: dfi[mask.any(1)] Out[99]: A B 0 1 a 2 3 f [2 rows x 2 columns]
Series
now supports ato_frame
method to convert it to a single-column DataFrame (GH5164)All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into Pandas objects
# note that pandas.rpy was deprecated in v0.16.0 import pandas.rpy.common as com com.load_data('Titanic')
tz_localize
can infer a fall daylight savings transition based on the structure of the unlocalized data (GH4230), see the docsDatetimeIndex
is now in the API documentation, see the docsjson_normalize()
is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
Python csv parser now supports usecols (GH4335)
Frequencies gained several new offsets:
DataFrame has a new
interpolate
method, similar to Series (GH4434, GH1892)In [100]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8], .....: 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]}) .....: In [101]: df.interpolate() Out[101]: A B 0 1.0 0.25 1 2.1 1.50 2 3.4 2.75 3 4.7 4.00 4 5.6 12.20 5 6.8 14.40 [6 rows x 2 columns]
Additionally, the
method
argument tointerpolate
has been expanded to include'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'piecewise_polynomial', 'pchip', `polynomial`, 'spline'
The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs.Interpolate now also accepts a
limit
keyword argument. This works similar tofillna
‘s limit:In [102]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11]) In [103]: ser.interpolate(limit=2) Out[103]: 0 1.0 1 3.0 2 5.0 3 7.0 4 NaN 5 11.0 dtype: float64
Added
wide_to_long
panel data convenience function. See the docs.In [104]: np.random.seed(123) In [105]: df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, .....: "A1980" : {0 : "d", 1 : "e", 2 : "f"}, .....: "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, .....: "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, .....: "X" : dict(zip(range(3), np.random.randn(3))) .....: }) .....: In [106]: df["id"] = df.index In [107]: df Out[107]: A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 [3 rows x 6 columns] In [108]: wide_to_long(df, ["A", "B"], i="id", j="year") Out[108]: X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 [6 rows x 3 columns]
to_csv
now takes adate_format
keyword argument that specifies how output datetime objects should be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied. (GH4313)DataFrame.plot
will scatter plot x versus y by passingkind='scatter'
(GH2215)- Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)
Experimental¶
The new
eval()
function implements expression evaluation usingnumexpr
behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. For example,In [109]: nrows, ncols = 20000, 100 In [110]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols)) .....: for _ in range(4)] .....:
# eval with NumExpr backend In [111]: %timeit pd.eval('df1 + df2 + df3 + df4') 100 loops, best of 3: 8.77 ms per loop
# pure Python evaluation In [112]: %timeit df1 + df2 + df3 + df4 10 loops, best of 3: 22.9 ms per loop
For more details, see the the docs
Similar to
pandas.eval
,DataFrame
has a newDataFrame.eval
method that evaluates an expression in the context of theDataFrame
. For example,In [113]: df = DataFrame(randn(10, 2), columns=['a', 'b']) In [114]: df.eval('a + b') Out[114]: 0 -0.685204 1 1.589745 2 0.325441 3 -1.784153 4 -0.432893 5 0.171850 6 1.895919 7 3.065587 8 -0.092759 9 1.391365 dtype: float64
query()
method has been added that allows you to select elements of aDataFrame
using a natural query syntax nearly identical to Python syntax. For example,In [115]: n = 20 In [116]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c']) In [117]: df.query('a < b < c') Out[117]: a b c 11 1 5 8 15 8 16 19 [2 rows x 3 columns]
selects all the rows of
df
wherea < b < c
evaluates toTrue
. For more details see the the docs.pd.read_msgpack()
andpd.to_msgpack()
are now a supported method of serialization of arbitrary pandas (and python objects) in a lightweight portable binary format. See the docsWarning
Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.
In [118]: df = DataFrame(np.random.rand(5,2),columns=list('AB')) In [119]: df.to_msgpack('foo.msg') In [120]: pd.read_msgpack('foo.msg') Out[120]: A B 0 0.251082 0.017357 1 0.347915 0.929879 2 0.546233 0.203368 3 0.064942 0.031722 4 0.355309 0.524575 [5 rows x 2 columns] In [121]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5)) In [122]: pd.to_msgpack('foo.msg', df, s) In [123]: pd.read_msgpack('foo.msg') Out[123]: [ A B 0 0.251082 0.017357 1 0.347915 0.929879 2 0.546233 0.203368 3 0.064942 0.031722 4 0.355309 0.524575 [5 rows x 2 columns], 2013-01-01 0.022321 2013-01-02 0.227025 2013-01-03 0.383282 2013-01-04 0.193225 2013-01-05 0.110977 Freq: D, dtype: float64]
You can pass
iterator=True
to iterator over the unpacked resultsIn [124]: for o in pd.read_msgpack('foo.msg',iterator=True): .....: print o .....: A B 0 0.251082 0.017357 1 0.347915 0.929879 2 0.546233 0.203368 3 0.064942 0.031722 4 0.355309 0.524575 [5 rows x 2 columns] 2013-01-01 0.022321 2013-01-02 0.227025 2013-01-03 0.383282 2013-01-04 0.193225 2013-01-05 0.110977 Freq: D, dtype: float64
pandas.io.gbq
provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing ad-hoc queries against extremely large datasets. See the docsfrom pandas.io import gbq # A query to select the average monthly temperatures in the # in the year 2000 across the USA. The dataset, # publicata:samples.gsod, is available on all BigQuery accounts, # and is based on NOAA gsod data. query = """SELECT station_number as STATION, month as MONTH, AVG(mean_temp) as MEAN_TEMP FROM publicdata:samples.gsod WHERE YEAR = 2000 GROUP BY STATION, MONTH ORDER BY STATION, MONTH ASC""" # Fetch the result set for this query # Your Google BigQuery Project ID # To find this, see your dashboard: # https://console.developers.google.com/iam-admin/projects?authuser=0 projectid = xxxxxxxxx; df = gbq.read_gbq(query, project_id = projectid) # Use pandas to process and reshape the dataset df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP') df3 = pandas.concat([df2.min(), df2.mean(), df2.max()], axis=1,keys=["Min Tem", "Mean Temp", "Max Temp"])
The resulting DataFrame is:
> df3 Min Tem Mean Temp Max Temp MONTH 1 -53.336667 39.827892 89.770968 2 -49.837500 43.685219 93.437932 3 -77.926087 48.708355 96.099998 4 -82.892858 55.070087 97.317240 5 -92.378261 61.428117 102.042856 6 -77.703334 65.858888 102.900000 7 -87.821428 68.169663 106.510714 8 -89.431999 68.614215 105.500000 9 -86.611112 63.436935 107.142856 10 -78.209677 56.880838 92.103333 11 -50.125000 48.861228 94.996428 12 -50.332258 42.286879 94.396774
Warning
To use this module, you will need a BigQuery account. See <https://cloud.google.com/products/big-query> for details.
As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows. A patch is scheduled for the week of 10/14/13.
Internal Refactoring¶
In 0.13.0 there is a major refactor primarily to subclass Series
from
NDFrame
, which is the base class currently for DataFrame
and Panel
,
to unify methods and behaviors. Series formerly subclassed directly from
ndarray
. (GH4080, GH3862, GH816)
Warning
There are two potential incompatibilities from < 0.13.0
Using certain numpy functions would previously return a
Series
if passed aSeries
as an argument. This seems only to affectnp.ones_like
,np.empty_like
,np.diff
andnp.where
. These now returnndarrays
.In [125]: s = Series([1,2,3,4])
Numpy Usage
In [126]: np.ones_like(s) Out[126]: array([1, 1, 1, 1]) In [127]: np.diff(s) Out[127]: array([1, 1, 1]) In [128]: np.where(s>1,s,np.nan) Out[128]: array([ nan, 2., 3., 4.])
Pandonic Usage
In [129]: Series(1,index=s.index) Out[129]: 0 1 1 1 2 1 3 1 dtype: int64 In [130]: s.diff() Out[130]: 0 NaN 1 1.0 2 1.0 3 1.0 dtype: float64 In [131]: s.where(s>1) Out[131]: 0 NaN 1 2.0 2 3.0 3 4.0 dtype: float64
Passing a
Series
directly to a cython function expecting anndarray
type will no long work directly, you must passSeries.values
, See Enhancing PerformanceSeries(0.5)
would previously return the scalar0.5
, instead this will return a 1-elementSeries
This change breaks
rpy2<=2.3.8
. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.
Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with
pd.read_pickle
, see Pickling.Refactor of series.py/frame.py/panel.py to move common code to generic.py
- added
_setup_axes
to created generic NDFrame structures - moved methods
from_axes,_wrap_array,axes,ix,loc,iloc,shape,empty,swapaxes,transpose,pop
__iter__,keys,__contains__,__len__,__neg__,__invert__
convert_objects,as_blocks,as_matrix,values
__getstate__,__setstate__
(compat remains in frame/panel)__getattr__,__setattr__
_indexed_same,reindex_like,align,where,mask
fillna,replace
(Series
replace is now consistent withDataFrame
)filter
(also added axis argument to selectively filter on a different axis)reindex,reindex_axis,take
truncate
(moved to become part ofNDFrame
)
- added
These are API changes which make
Panel
more consistent withDataFrame
swapaxes
on aPanel
with the same axes specified now return a copy- support attribute access for setting
- filter supports the same API as the original
DataFrame
filter
Reindex called with no arguments will now return a copy of the input object
TimeSeries
is now an alias forSeries
. the propertyis_time_series
can be used to distinguish (if desired)Refactor of Sparse objects to use BlockManager
- Created a new block type in internals,
SparseBlock
, which can hold multi-dtypes and is non-consolidatable.SparseSeries
andSparseDataFrame
now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit fromSparseArray
(which instead is the object of theSparseBlock
) - Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
- Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
- enable setitem on
SparseSeries
for boolean/integer/slices SparsePanels
implementation is unchanged (e.g. not using BlockManager, needs work)
- Created a new block type in internals,
added
ftypes
method to Series/DataFrame, similar todtypes
, but indicates if the underlying is sparse/dense (as well as the dtype)All
NDFrame
objects can now use__finalize__()
to specify various values to propagate to new objects from an existing one (e.g.name
inSeries
will follow more automatically now)Internal type checking is now done via a suite of generated classes, allowing
isinstance(value, klass)
without having to directly import the klass, courtesy of @jtratnerBug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types (GH3217), fillna (GH3386)
Refactor
Series.reindex
to core/generic.py (GH4604, GH4618), allowmethod=
in reindexing on a Series to workSeries.copy
no longer accepts theorder
parameter and is now consistent withNDFrame
copyRefactor
rename
methods to core/generic.py; fixesSeries.rename
for (GH4605), and addsrename
with the same signature forPanel
Refactor
clip
methods to core/generic.py (GH4798)Refactor of
_get_numeric_data/_get_bool_data
to core/generic.py, allowing Series/Panel functionalitySeries
(for index) /Panel
(for items) now allow attribute access to its elements (GH1903)In [132]: s = Series([1,2,3],index=list('abc')) In [133]: s.b Out[133]: 2 In [134]: s.a = 5 In [135]: s Out[135]: a 5 b 2 c 3 dtype: int64
Bug Fixes¶
See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.
See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.
v0.12.0 (July 24, 2013)¶
This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.
Highlights include a consistent I/O API naming scheme, routines to read html,
write multi-indexes to csv files, read & write STATA data files, read & write JSON format
files, Python 3 support for HDFStore
, filtering of groupby expressions via filter
, and a
revamped replace
routine that accepts regular expressions.
API changes¶
The I/O API is now much more consistent with a set of top level
reader
functions accessed likepd.read_csv()
that generally return apandas
object.
read_csv
read_excel
read_hdf
read_sql
read_json
read_html
read_stata
read_clipboard
The corresponding
writer
functions are object methods that are accessed likedf.to_csv()
to_csv
to_excel
to_hdf
to_sql
to_json
to_html
to_stata
to_clipboard
Fix modulo and integer division on Series,DataFrames to act similary to
float
dtypes to returnnp.nan
ornp.inf
as appropriate (GH3590). This correct a numpy bug that treatsinteger
andfloat
dtypes differently.In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] }) In [2]: p % 0 Out[2]: first second 0 NaN NaN 1 NaN NaN 2 NaN NaN [3 rows x 2 columns] In [3]: p % p Out[3]: first second 0 0.0 NaN 1 0.0 NaN 2 0.0 0.0 [3 rows x 2 columns] In [4]: p / p Out[4]: first second 0 1.0 NaN 1 1.0 NaN 2 1.0 1.0 [3 rows x 2 columns] In [5]: p / 0 Out[5]: first second 0 inf NaN 1 inf NaN 2 inf inf [3 rows x 2 columns]Add
squeeze
keyword togroupby
to allow reduction from DataFrame -> Series if groups are unique. This is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).In [6]: df2 = DataFrame([{"val1": 1, "val2" : 20}, {"val1":1, "val2": 19}, ...: {"val1":1, "val2": 27}, {"val1":1, "val2": 12}]) ...: In [7]: def func(dataf): ...: return dataf["val2"] - dataf["val2"].mean() ...: # squeezing the result frame to a series (because we have unique groups) In [8]: df2.groupby("val1", squeeze=True).apply(func) Out[8]: 0 0.5 1 -0.5 2 7.5 3 -7.5 Name: 1, dtype: float64 # no squeezing (the default, and behavior in 0.10.1) In [9]: df2.groupby("val1").apply(func) Out[9]: val2 0 1 2 3 val1 1 0.5 -0.5 7.5 -7.5 [1 rows x 4 columns]Raise on
iloc
when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Sinceiloc
is purely positional based, the labels on the Series are not alignable (GH3631)This case is rarely used, and there are plently of alternatives. This preserves the
iloc
API to be purely positional based.In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) In [11]: mask = (df.a%2 == 0) In [12]: mask Out[12]: A True B False C True D False E True Name: a, dtype: bool # this is what you should use In [13]: df.loc[mask] Out[13]: a A 0 C 2 E 4 [3 rows x 1 columns] # this will work as well In [14]: df.iloc[mask.values] Out[14]: a A 0 C 2 E 4 [3 rows x 1 columns]
df.iloc[mask]
will raise aValueError
The
raise_on_error
argument to plotting functions is removed. Instead, plotting functions raise aTypeError
when thedtype
of the object isobject
to remind you to avoidobject
arrays whenever possible and thus you should cast to an appropriate numeric dtype if you need to plot something.Add
colormap
keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie, matplotlib.cm.jet) or a string name of such an object (ie, ‘jet’). The colormap is sampled to select the color for each column. Please see Colormaps for more information. (GH3860)
DataFrame.interpolate()
is now deprecated. Please useDataFrame.fillna()
andDataFrame.replace()
instead. (GH3582, GH3675, GH3676)the
method
andaxis
arguments ofDataFrame.replace()
are deprecated
DataFrame.replace
‘sinfer_types
parameter is removed and now performs conversion by default. (GH3907)Add the keyword
allow_duplicates
toDataFrame.insert
to allow a duplicate column to be inserted ifTrue
, default isFalse
(same as prior to 0.12) (GH3679)IO api
added top-level function
read_excel
to replace the following, The original API is deprecated and will be removed in a future versionfrom pandas.io.parsers import ExcelFile xls = ExcelFile('path_to_file.xls') xls.parse('Sheet1', index_col=None, na_values=['NA'])With
import pandas as pd pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])added top-level function
read_sql
that is equivalent to the followingfrom pandas.io.sql import read_frame read_frame(....)
DataFrame.to_html
andDataFrame.to_latex
now accept a path for their first argument (GH3702)Do not allow astypes on
datetime64[ns]
except toobject
, andtimedelta64[ns]
toobject/int
(GH3425)The behavior of
datetime64
dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise aTypeError
when perfomed on aSeries
and return an emptySeries
when performed on aDataFrame
similar to performing these operations on, for example, aDataFrame
ofslice
objects:
- sum, prod, mean, std, var, skew, kurt, corr, and cov
read_html
now defaults toNone
when reading, and falls back onbs4
+html5lib
when lxml fails to parse. a list of parsers to try until success is also validThe internal
pandas
class hierarchy has changed (slightly). The previousPandasObject
now is calledPandasContainer
and a newPandasObject
has become the baseclass forPandasContainer
as well asIndex
,Categorical
,GroupBy
,SparseList
, andSparseArray
(+ their base classes). Currently,PandasObject
provides string methods (fromStringMixin
). (GH4090, GH4092)New
StringMixin
that, given a__unicode__
method, gets python 2 and python 3 compatible string methods (__str__
,__bytes__
, and__repr__
). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)
I/O Enhancements¶
pd.read_html()
can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See the docsYou can use
pd.read_html()
to read the output fromDataFrame.to_html()
like soIn [15]: df = DataFrame({'a': range(3), 'b': list('abc')}) In [16]: print(df) a b 0 0 a 1 1 b 2 2 c [3 rows x 2 columns] In [17]: html = df.to_html() In [18]: alist = pd.read_html(html, index_col=0) In [19]: print(df == alist[0]) a b 0 True True 1 True True 2 True True [3 rows x 2 columns]Note that
alist
here is a Pythonlist
sopd.read_html()
andDataFrame.to_html()
are not inverses.
pd.read_html()
no longer performs hard conversion of date strings (GH3656).Warning
You may have to install an older version of BeautifulSoup4, See the installation docs
Added module for reading and writing Stata files:
pandas.io.stata
(GH1512) accessable viaread_stata
top-level function for reading, andto_stata
DataFrame method for writing, See the docsAdded module for reading and writing json format files:
pandas.io.json
accessable viaread_json
top-level function for reading, andto_json
DataFrame method for writing, See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
MultiIndex
column support for reading and writing csv format files
The
header
option inread_csv
now accepts a list of the rows from which to read the index.The option,
tupleize_cols
can now be specified in bothto_csv
andread_csv
, to provide compatiblity for the pre 0.12 behavior of writing and readingMultIndex
columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as aMultiIndex
column.Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read
MultiIndex
columns will be in the new format. (GH3571, GH1651, GH3141)If an
index_col
is not specified (e.g. you don’t have an index, or wrote it withdf.to_csv(..., index=False
), then anynames
on the columns index will be lost.In [20]: from pandas.util.testing import makeCustomDataframe as mkdf In [21]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) In [22]: df.to_csv('mi.csv',tupleize_cols=False) In [23]: print(open('mi.csv').read()) C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 In [24]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1],tupleize_cols=False) Out[24]: C0 C_l0_g0 C_l0_g1 C_l0_g2 C1 C_l1_g0 C_l1_g1 C_l1_g2 C2 C_l2_g0 C_l2_g1 C_l2_g2 C3 C_l3_g0 C_l3_g1 C_l3_g2 R0 R1 R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2 R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2 R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2 R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2 R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2 [5 rows x 3 columns]Support for
HDFStore
(viaPyTables 3.0.0
) on Python3Iterator support via
read_hdf
that automatically opens and closes the store when iteration is finished. This is only for tablesIn [25]: path = 'store_iterator.h5' In [26]: DataFrame(randn(10,2)).to_hdf(path,'df',table=True) In [27]: for df in read_hdf(path,'df', chunksize=3): ....: print df ....: 0 1 0 0.713216 -0.778461 1 -0.661062 0.862877 2 0.344342 0.149565 0 1 3 -0.626968 -0.875772 4 -0.930687 -0.218983 5 0.949965 -0.442354 0 1 6 -0.402985 1.111358 7 -0.241527 -0.670477 8 0.049355 0.632633 0 1 9 -1.502767 -1.225492
read_csv
will now throw a more informative error message when a file contains no columns, e.g., all newline characters
Other Enhancements¶
DataFrame.replace()
now allows regular expressions on containedSeries
with object dtype. See the examples section in the regular docs Replacing via String ExpressionFor example you can do
In [25]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]}) In [26]: df.replace(regex=r'\s*\.\s*', value=np.nan) Out[26]: a b 0 a 1 1 b 2 2 NaN 3 3 NaN 4 [4 rows x 2 columns]to replace all occurrences of the string
'.'
with zero or more instances of surrounding whitespace withNaN
.Regular string replacement still works as expected. For example, you can do
In [27]: df.replace('.', np.nan) Out[27]: a b 0 a 1 1 b 2 2 NaN 3 3 NaN 4 [4 rows x 2 columns]to replace all occurrences of the string
'.'
withNaN
.
pd.melt()
now accepts the optional parametersvar_name
andvalue_name
to specify custom column names of the returned DataFrame.
pd.set_option()
now allows N option, value pairs (GH3667).Let’s say that we had an option
'a.b'
and another option'b.c'
. We can set them at the same time:In [28]: pd.get_option('a.b') Out[28]: 2 In [29]: pd.get_option('b.c') Out[29]: 3 In [30]: pd.set_option('a.b', 1, 'b.c', 4) In [31]: pd.get_option('a.b') Out[31]: 1 In [32]: pd.get_option('b.c') Out[32]: 4The
filter
method for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.In [33]: sf = Series([1, 1, 2, 3, 3, 3]) In [34]: sf.groupby(sf).filter(lambda x: x.sum() > 2) Out[34]: 3 3 4 3 5 3 dtype: int64The argument of
filter
must a function that, applied to the group as a whole, returnsTrue
orFalse
.Another useful operation is filtering out elements that belong to groups with only a couple members.
In [35]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')}) In [36]: dff.groupby('B').filter(lambda x: len(x) > 2) Out[36]: A B 2 2 b 3 3 b 4 4 b 5 5 b [4 rows x 2 columns]Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.
In [37]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False) Out[37]: A B 0 NaN NaN 1 NaN NaN 2 2.0 b 3 3.0 b 4 4.0 b 5 5.0 b 6 NaN NaN 7 NaN NaN [8 rows x 2 columns]Series and DataFrame hist methods now take a
figsize
argument (GH3834)DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills
read_html
now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)
Experimental Features¶
Added experimental
CustomBusinessDay
class to supportDateOffsets
with custom holiday calendars and custom weekmasks. (GH2301)Note
This uses the
numpy.busdaycalendar
API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.In [38]: from pandas.tseries.offsets import CustomBusinessDay In [39]: from datetime import datetime # As an interesting example, let's look at Egypt where # a Friday-Saturday weekend is observed. In [40]: weekmask_egypt = 'Sun Mon Tue Wed Thu' # They also observe International Workers' Day so let's # add that for a couple of years In [41]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')] In [42]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt) In [43]: dt = datetime(2013, 4, 30) In [44]: print(dt + 2 * bday_egypt) 2013-05-05 00:00:00 In [45]: dts = date_range(dt, periods=5, freq=bday_egypt) In [46]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split()))) 2013-04-30 Tue 2013-05-02 Thu 2013-05-05 Sun 2013-05-06 Mon 2013-05-07 Tue Freq: C, dtype: object
Bug Fixes¶
Plotting functions now raise a
TypeError
before trying to plot anything if the associated objects have have a dtype ofobject
(GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which elimnates any spurious plots from showing up.
fillna
methods now raise aTypeError
if thevalue
parameter is a list or tuple.
Series.str
now supports iteration (GH3638). You can iterate over the individual elements of each string in theSeries
. Each iteration yields yields aSeries
with either a single character at each index of the originalSeries
orNaN
. For example,In [47]: strs = 'go', 'bow', 'joe', 'slow' In [48]: ds = Series(strs) In [49]: for s in ds.str: ....: print(s) ....: 0 g 1 b 2 j 3 s dtype: object 0 o 1 o 2 o 3 l dtype: object 0 NaN 1 w 2 e 3 o dtype: object 0 NaN 1 NaN 2 NaN 3 w dtype: object In [50]: s Out[50]: 0 NaN 1 NaN 2 NaN 3 w dtype: object In [51]: s.dropna().values.item() == 'w' Out[51]: TrueThe last element yielded by the iterator will be a
Series
containing the last element of the longest string in theSeries
with all other elements beingNaN
. Here since'slow'
is the longest string and there are no other strings with the same length'w'
is the only non-null string in the yieldedSeries
.
HDFStore
- will retain index attributes (freq,tz,name) on recreation (GH3499)
- will warn with a
AttributeConflictWarning
if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing- support datelike columns with a timezone as data_columns (GH2852)
Non-unique index support clarified (GH3468).
- Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
- Fix construction of a DataFrame with a duplicate index
- ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
- applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
- Fix to_csv to handle non-unique columns (GH3495)
- Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
- Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
- Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
- Allow insert/delete to non-unique columns (GH3679)
- Non-unique indexing with a slice via
loc
and friends fixed (GH3659)- Allow insert/delete to non-unique columns (GH3679)
- Extend
reindex
to correctly deal with non-unique indices (GH3679)DataFrame.itertuples()
now works with frames with duplicate column names (GH3873)- Bug in non-unique indexing via
iloc
(GH4017); addedtakeable
argument toreindex
for location-based taking- Allow non-unique indexing in series via
.ix/.loc
and__getitem__
(GH4246)- Fixed non-unique indexing memory allocation issue with
.ix/.loc
(GH4280)
DataFrame.from_records
did not accept empty recarrays (GH3682)
read_html
now correctly skips tests (GH3741)Fixed a bug where
DataFrame.replace
with a compiled regular expression in theto_replace
argument wasn’t working (GH3907)Improved
network
test decorator to catchIOError
(and thereforeURLError
as well). Addedwith_connectivity_check
decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, newoptional_args
decorator factory for decorators. (GH3910, GH3914)Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
Series.hist
will now take the figure from the current environment if one is not passedFixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
Fixed running of
tox
under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
Fixed bug in
DataFrame.replace
where a nested dict wasn’t being iterated over when regex=False (GH4115)Fixed bug in the parsing of microseconds when using the
format
argument into_datetime
(GH4152)Fixed bug in
PandasAutoDateLocator
whereinvert_xaxis
triggered incorrectlyMilliSecondLocator
(GH3990)Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
Fixed the legend displaying in
DataFrame.plot(kind='kde')
(GH4216)Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
Fixed bug in initializing
DatetimeIndex
with an array of strings in a certain time zone (GH4229)Fixed bug where html5lib wasn’t being properly skipped (GH4265)
Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)
See the full release notes or issue tracker on GitHub for a complete list.
v0.11.0 (April 22, 2013)¶
This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.
There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.
There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want contributions!).
There are several libraries that are now Recommended Dependencies
Selection Choices¶
Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.
.loc
is strictly label based, will raiseKeyError
when the items are not found, allowed inputs are:- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
, (note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
See more at Selection by Label
- A single label, e.g.
.iloc
is strictly integer position based (from0
tolength-1
of the axis), will raiseIndexError
when the requested indicies are out of bounds. Allowed inputs are:- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
See more at Selection by Position
- An integer e.g.
.ix
supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access..ix
is the most general and will support any of the inputs to.loc
and.iloc
, as well as support for floating point label schemes..ix
is especially useful when dealing with mixed positional and label based hierarchial indexes.As using integer slices with
.ix
have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use.iloc
or.loc
.See more at Advanced Indexing and Advanced Hierarchical.
Selection Deprecations¶
Starting in version 0.11.0, these methods may be deprecated in future versions.
irow
icol
iget_value
See the section Selection by Position for substitutes.
Dtypes¶
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype
keyword, a passed ndarray
, or a passed Series
, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [2]: df1
Out[2]:
A
0 1.392665
1 -0.123497
2 -0.402761
3 -0.246604
4 -0.288433
5 -0.763434
6 2.069526
7 -1.203569
[8 rows x 1 columns]
In [3]: df1.dtypes
Out[3]:
A float32
dtype: object
In [4]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
...: B = Series(randn(8)),
...: C = Series(randn(8),dtype='uint8') ))
...:
In [5]: df2
Out[5]:
A B C
0 0.591797 -0.038605 0
1 0.841309 -0.460478 1
2 -0.500977 -0.310458 0
3 -0.816406 0.866493 254
4 -0.207031 0.245972 0
5 -0.664062 0.319442 1
6 0.580566 1.378512 1
7 -0.965820 0.292502 255
[8 rows x 3 columns]
In [6]: df2.dtypes
Out[6]:
A float16
B float64
C uint8
dtype: object
# here you get some upcasting
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
In [8]: df3
Out[8]:
A B C
0 1.984462 -0.038605 0.0
1 0.717812 -0.460478 1.0
2 -0.903737 -0.310458 0.0
3 -1.063011 0.866493 254.0
4 -0.495465 0.245972 0.0
5 -1.427497 0.319442 1.0
6 2.650092 1.378512 1.0
7 -2.169390 0.292502 255.0
[8 rows x 3 columns]
In [9]: df3.dtypes
Out[9]:
A float32
B float64
C float64
dtype: object
Dtype Conversion¶
This is lower-common-denomicator upcasting, meaning you get the dtype which can accomodate all of the types
In [10]: df3.values.dtype
Out[10]: dtype('float64')
Conversion
In [11]: df3.astype('float32').dtypes
Out[11]:
A float32
B float32
C float32
dtype: object
Mixed Conversion
In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'
In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float32
B float64
C float64
D float64
E int64
dtype: object
# same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')
In [16]: df3['E'] = df3['E'].astype('int32')
In [17]: df3.dtypes
Out[17]:
A float32
B float64
C float64
D float16
E int32
dtype: object
Forcing Date coercion (and setting NaT
when not datelike)
In [18]: from datetime import datetime
In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
....: Timestamp('20010104'), '20010105'],dtype='O')
....:
In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0 2001-01-01
1 NaT
2 NaT
3 NaT
4 2001-01-04
5 2001-01-05
dtype: datetime64[ns]
Dtype Gotchas¶
Platform Gotchas
Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64
and float64
,
regardless of platform. This is not an apparent change from earlier versions of pandas. If you specify
dtypes, they WILL be respected, however (GH2837)
The following will all result in int64
dtypes
In [21]: DataFrame([1,2],columns=['a']).dtypes
Out[21]:
a int64
dtype: object
In [22]: DataFrame({'a' : [1,2] }).dtypes
Out[22]:
a int64
dtype: object
In [23]: DataFrame({'a' : 1 }, index=range(2)).dtypes
Out[23]:
a int64
dtype: object
Keep in mind that DataFrame(np.array([1,2]))
WILL result in int32
on 32-bit platforms!
Upcasting Gotchas
Performing indexing operations on integer type data can easily upcast the data.
The dtype of the input data will be preserved in cases where nans
are not introduced.
In [24]: dfi = df3.astype('int32')
In [25]: dfi['D'] = dfi['D'].astype('int64')
In [26]: dfi
Out[26]:
A B C D E
0 1 0 0 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 -1 0 254 1 1
4 0 0 0 1 1
5 -1 0 1 1 1
6 2 1 1 1 1
7 -2 0 255 1 1
[8 rows x 5 columns]
In [27]: dfi.dtypes
Out[27]:
A int32
B int32
C int32
D int64
E int32
dtype: object
In [28]: casted = dfi[dfi>0]
In [29]: casted
Out[29]:
A B C D E
0 1.0 NaN NaN 1 1
1 NaN NaN 1.0 1 1
2 NaN NaN NaN 1 1
3 NaN NaN 254.0 1 1
4 NaN NaN NaN 1 1
5 NaN NaN 1.0 1 1
6 2.0 1.0 1.0 1 1
7 NaN NaN 255.0 1 1
[8 rows x 5 columns]
In [30]: casted.dtypes
Out[30]:
A float64
B float64
C float64
D int64
E int32
dtype: object
While float dtypes are unchanged.
In [31]: df4 = df3.copy()
In [32]: df4['A'] = df4['A'].astype('float32')
In [33]: df4.dtypes
Out[33]:
A float32
B float64
C float64
D float16
E int32
dtype: object
In [34]: casted = df4[df4>0]
In [35]: casted
Out[35]:
A B C D E
0 1.984462 NaN NaN 1.0 1
1 0.717812 NaN 1.0 1.0 1
2 NaN NaN NaN 1.0 1
3 NaN 0.866493 254.0 1.0 1
4 NaN 0.245972 NaN 1.0 1
5 NaN 0.319442 1.0 1.0 1
6 2.650092 1.378512 1.0 1.0 1
7 NaN 0.292502 255.0 1.0 1
[8 rows x 5 columns]
In [36]: casted.dtypes
Out[36]:
A float32
B float64
C float64
D float16
E int32
dtype: object
Datetimes Conversion¶
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of np.nan
to indicate a nan value,
in addition to the traditional NaT
, or not-a-time. This allows convenient nan setting in a generic way.
Furthermore datetime64[ns]
columns are created by default, when passed datetimelike objects (this change was introduced in 0.10.1)
(GH2809, GH2810)
In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])
In [38]: df['timestamp'] = Timestamp('20010103')
In [39]: df
Out[39]:
A B timestamp
2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 -0.270630 -1.685677 2001-01-03
2001-01-05 -0.440747 -0.115070 2001-01-03
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03
[6 rows x 3 columns]
# datetime64[ns] out of the box
In [40]: df.get_dtype_counts()
Out[40]:
datetime64[ns] 1
float64 2
dtype: int64
# use the traditional nan, which is mapped to NaT internally
In [41]: df.ix[2:4,['A','timestamp']] = np.nan
In [42]: df
Out[42]:
A B timestamp
2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 NaN -1.685677 NaT
2001-01-05 NaN -0.115070 NaT
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03
[6 rows x 3 columns]
Astype conversion on datetime64[ns]
to object
, implicity converts NaT
to np.nan
In [43]: import datetime
In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])
In [45]: s.dtype
Out[45]: dtype('<M8[ns]')
In [46]: s[1] = np.nan
In [47]: s
Out[47]:
0 2001-01-02
1 NaT
2 2001-01-02
dtype: datetime64[ns]
In [48]: s.dtype
Out[48]: dtype('<M8[ns]')
In [49]: s = s.astype('O')
In [50]: s
Out[50]:
0 2001-01-02 00:00:00
1 NaT
2 2001-01-02 00:00:00
dtype: object
In [51]: s.dtype
Out[51]: dtype('O')
API changes¶
- Added to_series() method to indicies, to facilitate the creation of indexers (GH3275)
HDFStore
- added the method
select_column
to select a single column from a table as a Series.- deprecated the
unique
method, can be replicated byselect_column(key,column).unique()
min_itemsize
parameter toappend
will now automatically create data_columns for passed keys
Enhancements¶
Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)
Numexpr is now a Recommended Dependencies, to accelerate certain types of numerical and boolean operations
Bottleneck is now a Recommended Dependencies, to accelerate certain types of
nan
operations
HDFStore
support
read_hdf/to_hdf
API similar toread_csv/to_csv
In [52]: df = DataFrame(dict(A=lrange(5), B=lrange(5))) In [53]: df.to_hdf('store.h5','table',append=True) In [54]: read_hdf('store.h5', 'table', where = ['index>2']) Out[54]: A B 3 3 3 4 4 4 [2 rows x 2 columns]provide dotted attribute access to
get
from stores, e.g.store.df == store['df']
new keywords
iterator=boolean
, andchunksize=number_in_a_chunk
are provided to support iteration onselect
andselect_as_multiple
(GH3076)You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)
You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)
In [55]: idx = date_range("2001-10-1", periods=5, freq='M') In [56]: ts = Series(np.random.rand(len(idx)),index=idx) In [57]: ts['2001'] Out[57]: 2001-10-31 0.663256 2001-11-30 0.079126 2001-12-31 0.587699 Freq: M, dtype: float64 In [58]: df = DataFrame(dict(A = ts)) In [59]: df['2001'] Out[59]: A 2001-10-31 0.663256 2001-11-30 0.079126 2001-12-31 0.587699 [3 rows x 1 columns]
Squeeze
to possibly remove length 1 dimensions from an object.In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'], ....: major_axis=date_range('20010102',periods=4), ....: minor_axis=['A','B','C','D']) ....: In [61]: p Out[61]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00 Minor_axis axis: A to D In [62]: p.reindex(items=['ItemA']).squeeze() Out[62]: A B C D 2001-01-02 -1.203403 0.425882 -0.436045 -0.982462 2001-01-03 0.348090 -0.969649 0.121731 0.202798 2001-01-04 1.215695 -0.218549 -0.631381 -0.337116 2001-01-05 0.404238 0.907213 -0.865657 0.483186 [4 rows x 4 columns] In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze() Out[63]: 2001-01-02 0.425882 2001-01-03 -0.969649 2001-01-04 -0.218549 2001-01-05 0.907213 Freq: D, Name: B, dtype: float64In
pd.io.data.Options
,
- Fix bug when trying to fetch data for the current month when already past expiry.
- Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
- New instance variables for calls and puts are automatically created when a method that creates them is called. This works for current month where the instance variables are simply
calls
andputs
. Also works for future expiry months and save the instance variable ascallsMMYY
orputsMMYY
, whereMMYY
are, respectively, the month and year of the option’s expiry.Options.get_near_stock_price
now allows the user to specify the month for which to get relevant options data.Options.get_forward_data
now has optional kwargsnear
andabove_below
. This allows the user to specify if they would like to only return forward looking data for options near the current stock price. This just obtains the data from Options.get_near_stock_price instead of Options.get_xxx_data() (GH2758).Cursor coordinate information is now displayed in time-series plots.
added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979)
added option display.chop_threshold to control display of small numerical values. (GH2739)
added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)
value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).
DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).
Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes
&
, in addition to<
and>
. (GH2919)
See the full release notes or issue tracker on GitHub for a complete list.
v0.10.1 (January 22, 2013)¶
This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is substantial new HDFStore functionality contributed by Jeff Reback.
An undesired API breakage with functions taking the inplace
option has been
reverted and deprecation warnings added.
API changes¶
- Functions taking an
inplace
option return the calling object as before. A deprecation message has been added - Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)
- Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)
- The file reader will now raise an exception when NA values are found in an explicitly specified integer column instead of converting the column to float (GH2631)
- DatetimeIndex.unique now returns a DatetimeIndex with the same name and
- timezone instead of an array (GH2563)
New features¶
- MySQL support for database (contribution from Dan Allan)
HDFStore¶
You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.
You can designate (and index) certain columns that you want to be able to
perform queries on a table, by passing a list to data_columns
In [1]: store = HDFStore('store.h5')
In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
...: columns=['A', 'B', 'C'])
...:
In [3]: df['string'] = 'foo'
In [4]: df.ix[4:6,'string'] = np.nan
In [5]: df.ix[7:9,'string'] = 'bar'
In [6]: df['string2'] = 'cool'
In [7]: df
Out[7]:
A B C string string2
2000-01-01 1.885136 -0.183873 2.550850 foo cool
2000-01-02 0.180759 -1.117089 0.061462 foo cool
2000-01-03 -0.294467 -0.591411 -0.876691 foo cool
2000-01-04 3.127110 1.451130 0.045152 foo cool
2000-01-05 -0.242846 1.195819 1.533294 NaN cool
2000-01-06 0.820521 -0.281201 1.651561 NaN cool
2000-01-07 -0.034086 0.252394 -0.498772 foo cool
2000-01-08 -2.290958 -1.601262 -0.256718 bar cool
[8 rows x 5 columns]
# on-disk operations
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])
In [9]: store.select('df',[ 'B > 0', 'string == foo' ])
Out[9]:
Empty DataFrame
Columns: [A, B, C, string, string2]
Index: []
[0 rows x 5 columns]
# this is in-memory version of this type of selection
In [10]: df[(df.B > 0) & (df.string == 'foo')]
Out[10]:
A B C string string2
2000-01-04 3.127110 1.451130 0.045152 foo cool
2000-01-07 -0.034086 0.252394 -0.498772 foo cool
[2 rows x 5 columns]
Retrieving unique values in an indexable or data column.
# note that this is deprecated as of 0.14.0
# can be replicated by: store.select_column('df','index').unique()
store.unique('df','index')
store.unique('df','string')
You can now store datetime64
in data columns
In [11]: df_mixed = df.copy()
In [12]: df_mixed['datetime64'] = Timestamp('20010102')
In [13]: df_mixed.ix[3:4,['A','B']] = np.nan
In [14]: store.append('df_mixed', df_mixed)
In [15]: df_mixed1 = store.select('df_mixed')
In [16]: df_mixed1
Out[16]:
A B C string string2 datetime64
2000-01-01 1.885136 -0.183873 2.550850 foo cool 2001-01-02
2000-01-02 0.180759 -1.117089 0.061462 foo cool 2001-01-02
2000-01-03 -0.294467 -0.591411 -0.876691 foo cool 2001-01-02
2000-01-04 NaN NaN 0.045152 foo cool 2001-01-02
2000-01-05 -0.242846 1.195819 1.533294 NaN cool 2001-01-02
2000-01-06 0.820521 -0.281201 1.651561 NaN cool 2001-01-02
2000-01-07 -0.034086 0.252394 -0.498772 foo cool 2001-01-02
2000-01-08 -2.290958 -1.601262 -0.256718 bar cool 2001-01-02
[8 rows x 6 columns]
In [17]: df_mixed1.get_dtype_counts()
Out[17]:
datetime64[ns] 1
float64 3
object 2
dtype: int64
You can pass columns
keyword to select to filter a list of the return
columns, this is equivalent to passing a
Term('columns',list_of_columns_to_filter)
In [18]: store.select('df',columns = ['A','B'])
Out[18]:
A B
2000-01-01 1.885136 -0.183873
2000-01-02 0.180759 -1.117089
2000-01-03 -0.294467 -0.591411
2000-01-04 3.127110 1.451130
2000-01-05 -0.242846 1.195819
2000-01-06 0.820521 -0.281201
2000-01-07 -0.034086 0.252394
2000-01-08 -2.290958 -1.601262
[8 rows x 2 columns]
HDFStore
now serializes multi-index dataframes when appending tables.
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
....: ['one', 'two', 'three']],
....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
....: names=['foo', 'bar'])
....:
In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
....: columns=['A', 'B', 'C'])
....:
In [21]: df
Out[21]:
A B C
foo bar
foo one 0.239369 0.174122 -1.131794
two -1.948006 0.980347 -0.674429
three -0.361633 -0.761218 1.768215
bar one 0.152288 -0.862613 -0.210968
two -0.859278 1.498195 0.462413
baz two -0.647604 1.511487 -0.727189
three -0.342928 -0.007364 1.427674
qux one 0.104020 2.052171 -1.230963
two -0.019240 -1.713238 0.838912
three -0.637855 0.215109 -1.515362
[10 rows x 3 columns]
In [22]: store.append('mi',df)
In [23]: store.select('mi')
Out[23]:
A B C
foo bar
foo one 0.239369 0.174122 -1.131794
two -1.948006 0.980347 -0.674429
three -0.361633 -0.761218 1.768215
bar one 0.152288 -0.862613 -0.210968
two -0.859278 1.498195 0.462413
baz two -0.647604 1.511487 -0.727189
three -0.342928 -0.007364 1.427674
qux one 0.104020 2.052171 -1.230963
two -0.019240 -1.713238 0.838912
three -0.637855 0.215109 -1.515362
[10 rows x 3 columns]
# the levels are automatically included as data columns
In [24]: store.select('mi', Term('foo=bar'))
Out[24]:
Empty DataFrame
Columns: [A, B, C]
Index: []
[0 rows x 3 columns]
Multi-table creation via append_to_multiple
and selection via
select_as_multiple
can create/select from multiple tables and return a
combined result, by using where
on a selector table.
In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
....: columns=['A', 'B', 'C', 'D', 'E', 'F'])
....:
In [26]: df_mt['foo'] = 'bar'
# you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt, selector = 'df1_mt')
In [28]: store
Out[28]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->6,indexers->[index])
/mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])
# indiviual tables were created
In [29]: store.select('df1_mt')
Out[29]:
A B
2000-01-01 1.586924 -0.447974
2000-01-02 -0.102206 0.870302
2000-01-03 1.249874 1.458210
2000-01-04 -0.616293 0.150468
2000-01-05 -0.431163 0.016640
2000-01-06 0.800353 -0.451572
2000-01-07 1.239198 0.185437
2000-01-08 -0.040863 0.290110
[8 rows x 2 columns]
In [30]: store.select('df2_mt')
Out[30]:
C D E F foo
2000-01-01 -1.573998 0.630925 -0.071659 -1.277640 bar
2000-01-02 1.275280 -1.199212 1.060780 1.673018 bar
2000-01-03 -0.710542 0.825392 1.557329 1.993441 bar
2000-01-04 0.132104 0.580923 -0.128750 1.445964 bar
2000-01-05 0.904578 -1.645852 -0.688741 0.228006 bar
2000-01-06 0.831767 0.228760 0.932498 -2.200069 bar
2000-01-07 -0.540770 -0.370038 1.298390 1.662964 bar
2000-01-08 -0.096145 1.717830 -0.462446 -0.112019 bar
[8 rows x 5 columns]
# as a multiple
In [31]: store.select_as_multiple(['df1_mt','df2_mt'], where = [ 'A>0','B>0' ], selector = 'df1_mt')
Out[31]:
A B C D E F foo
2000-01-03 1.249874 1.458210 -0.710542 0.825392 1.557329 1.993441 bar
2000-01-07 1.239198 0.185437 -0.540770 -0.370038 1.298390 1.662964 bar
[2 rows x 7 columns]
Enhancements
HDFStore
now can read native PyTables table format tables- You can pass
nan_rep = 'my_nan_rep'
to append, to change the default nan representation on disk (which converts to/from np.nan), this defaults to nan. - You can pass
index
toappend
. This defaults toTrue
. This will automagically create indicies on the indexables and data columns of the table - You can pass
chunksize=an integer
toappend
, to change the writing chunksize (default is 50000). This will signficantly lower your memory usage on writing. - You can pass
expectedrows=an integer
to the firstappend
, to set the TOTAL number of expectedrows thatPyTables
will expected. This will optimize read/write performance. Select
now supports passingstart
andstop
to provide selection space limiting in selection.- Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)
- Allow
DataFrame.merge
to handle combinatorial sizes too large for 64-bit integer (GH2690) - Series now has unary negation (-series) and inversion (~series) operators (GH2686)
- DataFrame.plot now includes a
logx
parameter to change the x-axis to log scale (GH2327) - Series arithmetic operators can now handle constant and ndarray input (GH2574)
- ExcelFile now takes a
kind
argument to specify the file type (GH2613) - A faster implementation for Series.str methods (GH2602)
Bug Fixes
HDFStore
tables can now storefloat32
types correctly (cannot be mixed withfloat64
however)- Fixed Google Analytics prefix when specifying request segment (GH2713).
- Function to reset Google Analytics token store so users can recover from improperly setup client secrets (GH2687).
- Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)
- Fixed bug where passing a Series with datetime64 values into to_datetime results in bogus output values (GH2699)
- Fixed bug in
pattern in HDFStore
expressions when pattern is not a valid regex (GH2694) - Fixed performance issues while aggregating boolean data (GH2692)
- When given a boolean mask key and a Series of new values, Series __setitem__ will now align the incoming values with the original Series (GH2686)
- Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number of combinatorial values (GH2684)
- Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
- Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a weekend (GH2680)
- Fixed C file parser behavior when the file has more columns than data (GH2668)
- Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified usecols value
- DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
- Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)
- Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)
See the full release notes or issue tracker on GitHub for a complete list.
v0.10.0 (December 17, 2012)¶
This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention to.
File parsing new features¶
The delimited file parsing engine (the guts of read_csv
and read_table
)
has been rewritten from the ground up and now uses a fraction the amount of
memory while parsing, while being 40% or more faster in most use cases (in some
cases much faster).
There are also many new features:
- Much-improved Unicode handling via the
encoding
option. - Column filtering (
usecols
) - Dtype specification (
dtype
argument) - Ability to specify strings to be recognized as True/False
- Ability to yield NumPy record arrays (
as_recarray
) - High performance
delim_whitespace
option - Decimal format (e.g. European format) specification
- Easier CSV dialect options:
escapechar
,lineterminator
,quotechar
, etc. - More robust handling of many exceptional kinds of files observed in the wild
API changes¶
Deprecated DataFrame BINOP TimeSeries special case behavior
The default behavior of binary operations between a DataFrame and a Series has always been to align on the DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what I’m talking about:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(np.random.randn(6, 4),
...: index=pd.date_range('1/1/2000', periods=6))
...:
In [3]: df
Out[3]:
0 1 2 3
2000-01-01 -0.134024 -0.205969 1.348944 -1.198246
2000-01-02 -1.626124 0.982041 0.059493 -0.460111
2000-01-03 -1.565401 -0.025706 0.942864 2.502156
2000-01-04 -0.302741 0.261551 -0.066342 0.897097
2000-01-05 0.268766 -1.225092 0.582752 -1.490764
2000-01-06 -0.639757 -0.952750 -0.892402 0.505987
[6 rows x 4 columns]
# deprecated now
In [4]: df - df[0]
Out[4]:
2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 \
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-04 00:00:00 2000-01-05 00:00:00 2000-01-06 00:00:00 0 \
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 NaN NaN NaN NaN
2000-01-04 NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN
1 2 3
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
[6 rows x 10 columns]
# Change your code to
In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)
Out[5]:
0 1 2 3
2000-01-01 0.0 -0.071946 1.482967 -1.064223
2000-01-02 0.0 2.608165 1.685618 1.166013
2000-01-03 0.0 1.539695 2.508265 4.067556
2000-01-04 0.0 0.564293 0.236399 1.199839
2000-01-05 0.0 -1.493857 0.313986 -1.759530
2000-01-06 0.0 -0.312993 -0.252645 1.145744
[6 rows x 4 columns]
You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or later.
Altered resample default behavior
The default time series resample
binning behavior of daily D
and
higher frequencies has been changed to closed='left', label='left'
. Lower
nfrequencies are unaffected. The prior defaults were causing a great deal of
confusion for users, especially resampling data to daily frequency (which
labeled the aggregated group with the end of the interval: the next day).
In [1]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [2]: series = Series(np.arange(len(dates)), index=dates)
In [3]: series
Out[3]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
2000-01-01 20:00:00 5
2000-01-02 00:00:00 6
2000-01-02 04:00:00 7
2000-01-02 08:00:00 8
2000-01-02 12:00:00 9
2000-01-02 16:00:00 10
2000-01-02 20:00:00 11
2000-01-03 00:00:00 12
2000-01-03 04:00:00 13
2000-01-03 08:00:00 14
2000-01-03 12:00:00 15
2000-01-03 16:00:00 16
2000-01-03 20:00:00 17
2000-01-04 00:00:00 18
2000-01-04 04:00:00 19
2000-01-04 08:00:00 20
2000-01-04 12:00:00 21
2000-01-04 16:00:00 22
2000-01-04 20:00:00 23
2000-01-05 00:00:00 24
Freq: 4H, dtype: int64
In [4]: series.resample('D', how='sum')
Out[4]:
2000-01-01 15
2000-01-02 51
2000-01-03 87
2000-01-04 123
2000-01-05 24
Freq: D, dtype: int64
In [5]: # old behavior
In [6]: series.resample('D', how='sum', closed='right', label='right')
Out[6]:
2000-01-01 0
2000-01-02 21
2000-01-03 57
2000-01-04 93
2000-01-05 129
Freq: D, dtype: int64
- Infinity and negative infinity are no longer treated as NA by
isnull
andnotnull
. That they ever were was a relic of early pandas. This behavior can be re-enabled globally by themode.use_inf_as_null
option:
In [6]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])
In [7]: pd.isnull(s)
Out[7]:
0 False
1 False
2 False
3 False
dtype: bool
In [8]: s.fillna(0)
Out[8]:
0 1.500000
1 inf
2 3.400000
3 -inf
dtype: float64
In [9]: pd.set_option('use_inf_as_null', True)
In [10]: pd.isnull(s)
Out[10]:
0 False
1 True
2 False
3 True
dtype: bool
In [11]: s.fillna(0)
Out[11]:
0 1.5
1 0.0
2 3.4
3 0.0
dtype: float64
In [12]: pd.reset_option('use_inf_as_null')
- Methods with the
inplace
option now all returnNone
instead of the calling object. E.g. code written likedf = df.fillna(0, inplace=True)
may stop working. To fix, simply delete the unnecessary variable assignment. pandas.merge
no longer sorts the group keys (sort=False
) by default. This was done for performance reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnecessary.- The default column names for a file with no header have been changed to the
integers
0
throughN - 1
. This is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (namesX0
,X1
, ...) can be reproduced by specifyingprefix='X'
:
In [13]: data= 'a,b,c\n1,Yes,2\n3,No,4'
In [14]: print(data)
a,b,c
1,Yes,2
3,No,4
In [15]: pd.read_csv(StringIO(data), header=None)
Out[15]:
0 1 2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]
In [16]: pd.read_csv(StringIO(data), header=None, prefix='X')
Out[16]:
X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]
- Values like
'Yes'
and'No'
are not interpreted as boolean by default, though this can be controlled by newtrue_values
andfalse_values
arguments:
In [17]: print(data)
a,b,c
1,Yes,2
3,No,4
In [18]: pd.read_csv(StringIO(data))
Out[18]:
a b c
0 1 Yes 2
1 3 No 4
[2 rows x 3 columns]
In [19]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[19]:
a b c
0 1 True 2
1 3 False 4
[2 rows x 3 columns]
- The file parsers will not recognize non-string values arising from a
converter function as NA if passed in the
na_values
argument. It’s better to do post-processing using thereplace
function instead. - Calling
fillna
on Series or DataFrame with no arguments is no longer valid code. You must either specify a fill value or an interpolation method:
In [20]: s = Series([np.nan, 1., 2., np.nan, 4])
In [21]: s
Out[21]:
0 NaN
1 1.0
2 2.0
3 NaN
4 4.0
dtype: float64
In [22]: s.fillna(0)
Out[22]:
0 0.0
1 1.0
2 2.0
3 0.0
4 4.0
dtype: float64
In [23]: s.fillna(method='pad')
Out[23]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
dtype: float64
Convenience methods ffill
and bfill
have been added:
In [24]: s.ffill()
Out[24]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
dtype: float64
Series.apply
will now operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrameIn [25]: def f(x): ....: return Series([ x, x**2 ], index = ['x', 'x^2']) ....: In [26]: s = Series(np.random.rand(5)) In [27]: s Out[27]: 0 0.717478 1 0.815199 2 0.452478 3 0.848385 4 0.235477 dtype: float64 In [28]: s.apply(f) Out[28]: x x^2 0 0.717478 0.514775 1 0.815199 0.664550 2 0.452478 0.204737 3 0.848385 0.719757 4 0.235477 0.055449 [5 rows x 2 columns]
New API functions for working with pandas options (GH2097):
get_option
/set_option
- get/set the value of an option. Partial names are accepted. -reset_option
- reset one or more options to their default value. Partial names are accepted. -describe_option
- print a description of one or more options. When called with no arguments. print all registered options.
Note:
set_printoptions
/reset_printoptions
are now deprecated (but functioning), the print options now live under “display.XYZ”. For example:In [29]: get_option("display.max_rows") Out[29]: 15
to_string() methods now always return unicode strings (GH2224).
New features¶
Wide DataFrame Printing¶
Instead of printing the summary information, pandas now splits the string representation across multiple rows by default:
In [30]: wide_frame = DataFrame(randn(5, 16))
In [31]: wide_frame
Out[31]:
0 1 2 3 4 5 6 \
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599
1 0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725
7 8 9 10 11 12 13 \
0 -1.201796 -1.422811 -0.882554 1.209871 -0.941235 0.863067 -0.336232
1 0.207232 -1.983857 -1.702547 -1.621234 -0.906840 1.014601 -0.475108
2 1.383381 0.085638 0.246392 0.965887 0.246354 -0.727728 -0.094414
3 0.089931 0.776079 0.752889 -1.195795 -1.425911 -0.548829 0.774225
4 1.002440 1.276582 0.054399 0.241963 -0.471786 0.314510 -0.059986
14 15
0 -0.976847 0.033862
1 -0.358944 1.262942
2 -0.276854 0.158399
3 0.740501 1.510263
4 -2.069319 -1.115104
[5 rows x 16 columns]
The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:
In [32]: pd.set_option('expand_frame_repr', False)
In [33]: wide_frame
Out[33]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599 -1.201796 -1.422811 -0.882554 1.209871 -0.941235 0.863067 -0.336232 -0.976847 0.033862
1 0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532 0.207232 -1.983857 -1.702547 -1.621234 -0.906840 1.014601 -0.475108 -0.358944 1.262942
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865 1.383381 0.085638 0.246392 0.965887 0.246354 -0.727728 -0.094414 -0.276854 0.158399
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362 0.089931 0.776079 0.752889 -1.195795 -1.425911 -0.548829 0.774225 0.740501 1.510263
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725 1.002440 1.276582 0.054399 0.241963 -0.471786 0.314510 -0.059986 -2.069319 -1.115104
[5 rows x 16 columns]
The width of each line can be changed via ‘line_width’ (80 by default):
In [34]: pd.set_option('line_width', 40)
line_width has been deprecated, use display.width instead (currently both are
identical)
In [35]: wide_frame
Out[35]:
0 1 2 \
0 -0.681624 0.191356 1.180274
1 0.441522 -0.316864 -0.017062
2 -0.412451 -0.462580 0.422194
3 -0.277255 1.331263 0.585174
4 -1.642511 0.432560 1.218080
3 4 5 \
0 -0.834179 0.703043 0.166568
1 1.570114 -0.360875 -0.880096
2 0.288403 -0.487393 -0.777639
3 -0.568825 -0.719412 1.191340
4 -0.564705 -0.581790 0.286071
6 7 8 \
0 -0.583599 -1.201796 -1.422811
1 0.235532 0.207232 -1.983857
2 0.055865 1.383381 0.085638
3 -0.456362 0.089931 0.776079
4 0.048725 1.002440 1.276582
9 10 11 \
0 -0.882554 1.209871 -0.941235
1 -1.702547 -1.621234 -0.906840
2 0.246392 0.965887 0.246354
3 0.752889 -1.195795 -1.425911
4 0.054399 0.241963 -0.471786
12 13 14 \
0 0.863067 -0.336232 -0.976847
1 1.014601 -0.475108 -0.358944
2 -0.727728 -0.094414 -0.276854
3 -0.548829 0.774225 0.740501
4 0.314510 -0.059986 -2.069319
15
0 0.033862
1 1.262942
2 0.158399
3 1.510263
4 -1.115104
[5 rows x 16 columns]
Updated PyTables Support¶
Docs for PyTables Table
format & several enhancements to the api. Here is a taste of what to expect.
In [36]: store = HDFStore('store.h5')
In [37]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
....: columns=['A', 'B', 'C'])
....:
In [38]: df
Out[38]:
A B C
2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02 0.511936 -0.116412 -0.625256
2000-01-03 -0.550627 1.261433 -0.552429
2000-01-04 1.695803 -1.025917 -0.910942
2000-01-05 0.426805 -0.131749 0.432600
2000-01-06 0.044671 -0.341265 1.844536
2000-01-07 -2.036047 0.000830 -0.955697
2000-01-08 -0.898872 -0.725411 0.059904
[8 rows x 3 columns]
# appending data frames
In [39]: df1 = df[0:4]
In [40]: df2 = df[4:]
In [41]: store.append('df', df1)
In [42]: store.append('df', df2)
In [43]: store
Out[43]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
# selecting the entire store
In [44]: store.select('df')
Out[44]:
A B C
2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02 0.511936 -0.116412 -0.625256
2000-01-03 -0.550627 1.261433 -0.552429
2000-01-04 1.695803 -1.025917 -0.910942
2000-01-05 0.426805 -0.131749 0.432600
2000-01-06 0.044671 -0.341265 1.844536
2000-01-07 -2.036047 0.000830 -0.955697
2000-01-08 -0.898872 -0.725411 0.059904
[8 rows x 3 columns]
In [45]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
....: major_axis=date_range('1/1/2000', periods=5),
....: minor_axis=['A', 'B', 'C', 'D'])
....:
In [46]: wp
Out[46]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
# storing a panel
In [47]: store.append('wp',wp)
# selecting via A QUERY
In [48]: store.select('wp',
....: [ Term('major_axis>20000102'), Term('minor_axis', '=', ['A','B']) ])
....:
Out[48]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B
# removing data from tables
In [49]: store.remove('wp', Term('major_axis>20000103'))
Out[49]: 8
In [50]: store.select('wp')
Out[50]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D
# deleting a store
In [51]: del store['df']
In [52]: store
Out[52]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
Enhancements
added ability to hierarchical keys
In [53]: store.put('foo/bar/bah', df) In [54]: store.append('food/orange', df) In [55]: store.append('food/apple', df) In [56]: store Out[56]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /foo/bar/bah frame (shape->[8,3]) /food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis]) # remove all nodes under this level In [57]: store.remove('food') In [58]: store Out[58]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /foo/bar/bah frame (shape->[8,3]) /wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
added mixed-dtype support!
In [59]: df['string'] = 'string' In [60]: df['int'] = 1 In [61]: store.append('df',df) In [62]: df1 = store.select('df') In [63]: df1 Out[63]: A B C string int 2000-01-01 -0.369325 -1.502617 -0.376280 string 1 2000-01-02 0.511936 -0.116412 -0.625256 string 1 2000-01-03 -0.550627 1.261433 -0.552429 string 1 2000-01-04 1.695803 -1.025917 -0.910942 string 1 2000-01-05 0.426805 -0.131749 0.432600 string 1 2000-01-06 0.044671 -0.341265 1.844536 string 1 2000-01-07 -2.036047 0.000830 -0.955697 string 1 2000-01-08 -0.898872 -0.725411 0.059904 string 1 [8 rows x 5 columns] In [64]: df1.get_dtype_counts() Out[64]: float64 3 int64 1 object 1 dtype: int64
performance improvments on table writing
support for arbitrarily indexed dimensions
SparseSeries
now has adensity
property (GH2384)enable
Series.str.strip/lstrip/rstrip
methods to take an input argument to strip arbitrary characters (GH2411)implement
value_vars
inmelt
to limit values to certain columns and addmelt
to pandas namespace (GH2412)
Bug Fixes
- added
Term
method of specifying where conditions (GH1996). del store['df']
now callstore.remove('df')
for store deletion- deleting of consecutive rows is much faster than before
min_itemsize
parameter can be specified in table creation to force a minimum size for indexing columns (the previous implementation would set the column size based on the first append)- indexing support via
create_table_index
(requires PyTables >= 2.3) (GH698). - appending on a store would fail if the table was not first created via
put
- fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- minor change to select and remove: require a table ONLY if where is also provided (and not None)
Compatibility
0.10 of HDFStore
is backwards compatible for reading tables created in a prior version of pandas,
however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire
file and write it out using the new format to take advantage of the updates.
N Dimensional Panels (Experimental)¶
Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for NDim. Here is a taste of what to expect.
In [65]: p4d = Panel4D(randn(2, 2, 5, 4), ....: labels=['Label1','Label2'], ....: items=['Item1', 'Item2'], ....: major_axis=date_range('1/1/2000', periods=5), ....: minor_axis=['A', 'B', 'C', 'D']) ....: In [66]: p4d Out[66]: <class 'pandas.core.panelnd.Panel4D'> Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis) Labels axis: Label1 to Label2 Items axis: Item1 to Item2 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00 Minor_axis axis: A to D
See the full release notes or issue tracker on GitHub for a complete list.
v0.9.1 (November 14, 2012)¶
This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.
New features¶
Series.sort, DataFrame.sort, and DataFrame.sort_index can now be specified in a per-column manner to support multiple sort orders (GH928)
In [1]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C']) In [2]: df.sort(['A', 'B'], ascending=[1, 0]) Out[2]: A B C 0 0 1 0 2 0 0 1 1 1 1 1 5 1 1 0 3 1 0 0 4 1 0 1 [6 rows x 3 columns]DataFrame.rank now supports additional argument values for the na_option parameter so missing values can be assigned either the largest or the smallest rank (GH1508, GH2159)
In [3]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) In [4]: df.ix[2:4] = np.nan In [5]: df.rank() Out[5]: A B C 0 3.0 2.0 1.0 1 1.0 3.0 3.0 2 NaN NaN NaN 3 NaN NaN NaN 4 NaN NaN NaN 5 2.0 1.0 2.0 [6 rows x 3 columns] In [6]: df.rank(na_option='top') Out[6]: A B C 0 6.0 5.0 4.0 1 4.0 6.0 6.0 2 2.0 2.0 2.0 3 2.0 2.0 2.0 4 2.0 2.0 2.0 5 5.0 4.0 5.0 [6 rows x 3 columns] In [7]: df.rank(na_option='bottom') Out[7]: A B C 0 3.0 2.0 1.0 1 1.0 3.0 3.0 2 5.0 5.0 5.0 3 5.0 5.0 5.0 4 5.0 5.0 5.0 5 2.0 1.0 2.0 [6 rows x 3 columns]DataFrame has new where and mask methods to select values according to a given boolean mask (GH2109, GH2151)
DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside the []). The returned DataFrame has the same number of columns as the original, but is sliced on its index.
In [8]: df = DataFrame(np.random.randn(5, 3), columns = ['A','B','C']) In [9]: df Out[9]: A B C 0 -0.187239 -1.703664 0.613136 1 -0.948528 0.505346 0.017228 2 -2.391256 1.207381 0.853174 3 0.124213 -0.625597 -1.211224 4 -0.476548 0.649425 0.004610 [5 rows x 3 columns] In [10]: df[df['A'] > 0] Out[10]: A B C 3 0.124213 -0.625597 -1.211224 [1 rows x 3 columns]If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with elements that do not meet the boolean condition as NaN. This is accomplished via the new method DataFrame.where. In addition, where takes an optional other argument for replacement.
In [11]: df[df>0] Out[11]: A B C 0 NaN NaN 0.613136 1 NaN 0.505346 0.017228 2 NaN 1.207381 0.853174 3 0.124213 NaN NaN 4 NaN 0.649425 0.004610 [5 rows x 3 columns] In [12]: df.where(df>0) Out[12]: A B C 0 NaN NaN 0.613136 1 NaN 0.505346 0.017228 2 NaN 1.207381 0.853174 3 0.124213 NaN NaN 4 NaN 0.649425 0.004610 [5 rows x 3 columns] In [13]: df.where(df>0,-df) Out[13]: A B C 0 0.187239 1.703664 0.613136 1 0.948528 0.505346 0.017228 2 2.391256 1.207381 0.853174 3 0.124213 0.625597 1.211224 4 0.476548 0.649425 0.004610 [5 rows x 3 columns]Furthermore, where now aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analagous to partial setting via .ix (but on the contents rather than the axis labels)
In [14]: df2 = df.copy() In [15]: df2[ df2[1:4] > 0 ] = 3 In [16]: df2 Out[16]: A B C 0 -0.187239 -1.703664 0.613136 1 -0.948528 3.000000 3.000000 2 -2.391256 3.000000 3.000000 3 3.000000 -0.625597 -1.211224 4 -0.476548 0.649425 0.004610 [5 rows x 3 columns]DataFrame.mask is the inverse boolean operation of where.
In [17]: df.mask(df<=0) Out[17]: A B C 0 NaN NaN 0.613136 1 NaN 0.505346 0.017228 2 NaN 1.207381 0.853174 3 0.124213 NaN NaN 4 NaN 0.649425 0.004610 [5 rows x 3 columns]Enable referencing of Excel columns by their column names (GH1936)
In [18]: xl = ExcelFile('data/test.xls') In [19]: xl.parse('Sheet1', index_col=0, parse_dates=True, ....: parse_cols='A:D') ....: --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) <ipython-input-19-7ac41df80d31> in <module>() 1 xl.parse('Sheet1', index_col=0, parse_dates=True, ----> 2 parse_cols='A:D') /home/joris/scipy/pandas/pandas/io/excel.pyc in parse(self, sheetname, header, skiprows, skip_footer, names, index_col, parse_cols, parse_dates, date_parser, na_values, thousands, convert_float, has_index_names, converters, true_values, false_values, squeeze, **kwds) 279 false_values=false_values, 280 squeeze=squeeze, --> 281 **kwds) 282 283 def _should_parse(self, i, parse_cols): /home/joris/scipy/pandas/pandas/io/excel.pyc in _parse_excel(self, sheetname, header, skiprows, names, skip_footer, index_col, has_index_names, parse_cols, parse_dates, date_parser, na_values, thousands, convert_float, true_values, false_values, verbose, squeeze, **kwds) 337 "is not implemented") 338 if parse_dates: --> 339 raise NotImplementedError("parse_dates keyword of read_excel " 340 "is not implemented") 341 NotImplementedError: parse_dates keyword of read_excel is not implementedAdded option to disable pandas-style tick locators and formatters using series.plot(x_compat=True) or pandas.plot_params[‘x_compat’] = True (GH2205)
Existing TimeSeries methods at_time and between_time were added to DataFrame (GH2149)
DataFrame.dot can now accept ndarrays (GH2042)
DataFrame.drop now supports non-unique indexes (GH2101)
Panel.shift now supports negative periods (GH2164)
DataFrame now support unary ~ operator (GH2110)
API changes¶
Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time window
In [1]: prng = period_range('2012Q1', periods=2, freq='Q') In [2]: s = Series(np.random.randn(len(prng)), prng) In [4]: s.resample('M') Out[4]: 2012-01 -1.471992 2012-02 NaN 2012-03 NaN 2012-04 -0.493593 2012-05 NaN 2012-06 NaN Freq: M, dtype: float64Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)
In [20]: p = Period('2012') In [21]: p.end_time Out[21]: Timestamp('2012-12-31 23:59:59.999999999')File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)
In [22]: data = 'A,B,C\n00001,001,5\n00002,002,6' In [23]: read_csv(StringIO(data), converters={'A' : lambda x: x.strip()}) Out[23]: A B C 0 00001 1 5 1 00002 2 6 [2 rows x 3 columns]
See the full release notes or issue tracker on GitHub for a complete list.
v0.9.0 (October 7, 2012)¶
This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame, more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.
New features¶
- Add
encode
anddecode
for unicode handling to vectorized string processing methods in Series.str (GH1706)- Add
DataFrame.to_latex
method (GH1735)- Add convenient expanding window equivalents of all rolling_* ops (GH1785)
- Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
- More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
- Add
level
parameter toSeries.reset_index
TimeSeries.between_time
can now select times across midnight (GH1871)- Series constructor can now handle generator as input (GH1679)
DataFrame.dropna
can now take multiple axes (tuple/list) as input (GH924)- Enable
skip_footer
parameter inExcelFile.parse
(GH1843)
API changes¶
- The default column names when
header=None
and no columns names passed to functions likeread_csv
has changed to be more Pythonic and amenable to attribute access:
In [1]: data = '0,0,1\n1,1,0\n0,1,0'
In [2]: df = read_csv(StringIO(data), header=None)
In [3]: df
Out[3]:
0 1 2
0 0 0 1
1 1 1 0
2 0 1 0
[3 rows x 3 columns]
- Creating a Series from another Series, passing an index, will cause reindexing
to happen inside rather than treating the Series like an ndarray. Technically
improper usages like
Series(df[col1], index=df[col2])
that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:
In [4]: s1 = Series([1, 2, 3])
In [5]: s1
Out[5]:
0 1
1 2
2 3
dtype: int64
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
In [7]: s2
Out[7]:
foo NaN
bar NaN
baz NaN
dtype: float64
- Deprecated
day_of_year
API removed from PeriodIndex, usedayofyear
(GH1723) - Don’t modify NumPy suppress printoption to True at import time
- The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
- Legacy cruft removed: pandas.stats.misc.quantileTS
- Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
- Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
- Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
first
andlast
methods inGroupBy
no longer drop non-numeric columns (GH1809)- Resolved inconsistencies in specifying custom NA values in text parser.
na_values
of type dict no longer override default NAs unlesskeep_default_na
is set to false explicitly (GH1657) DataFrame.dot
will not do data alignment, and also work with Series (GH1915)
See the full release notes or issue tracker on GitHub for a complete list.
v0.8.1 (July 22, 2012)¶
This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features include notably NA friendly string processing functionality and a series of new plot types and options.
New features¶
- Add vectorized string processing methods accessible via Series.str (GH620)
- Add option to disable adjustment in EWMA (GH1584)
- Radviz plot (GH1566)
- Parallel coordinates plot
- Bootstrap plot
- Per column styles and secondary y-axis plotting (GH1559)
- New datetime converters millisecond plotting (GH1599)
- Add option to disable “sparse” display of hierarchical indexes (GH1538)
- Series/DataFrame’s
set_index
method can append levels to an existing Index/MultiIndex (GH1569, GH1577)
Performance improvements¶
- Improved implementation of rolling min and max (thanks to Bottleneck !)
- Add accelerated
'median'
GroupBy option (GH1358)- Significantly improve the performance of parsing ISO8601-format date strings with
DatetimeIndex
orto_datetime
(GH1571)- Improve the performance of GroupBy on single-key aggregations and use with Categorical types
- Significant datetime parsing performance improvments
v0.8.0 (June 29, 2012)¶
This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20 distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on GitHub for a complete list.
Support for non-unique indexes¶
All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join semantics (including, if application, index duplication in many-to-many joins)
NumPy datetime64 dtype and 1.6 dependency¶
Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy 1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and only interact with this data using the interface that pandas provides.
See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from pandas 0.7 or earlier to 0.8.0.
Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further development in 0.7.x beyond bug fixes.
Time series changes and improvements¶
Note
With this release, legacy scikits.timeseries users should be able to port their code to use pandas.
Note
See documentation for overview of pandas timeseries API.
- New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and improve serialization / deserialization performance significantly over datetime.datetime
- High performance and flexible resample method for converting from high-to-low and low-to-high frequency. Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-Close) have also been implemented.
- Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’
- New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated DateRange class
- New
PeriodIndex
andPeriod
classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and DatetimeIndex - New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working with nanosecond-resolution data. Also provides easy time zone conversions.
- Enhanced support for time zones. Add
tz_convert and
tz_lcoalize
methods to TimeSeries and DataFrame. All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only if their UTC timestamps match. Operations between time zone-aware time series with different time zones will result in a UTC-indexed time series. - Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings
- Enhanced time series plotting; adaptation of scikits.timeseries matplotlib-based plotting code
- New
date_range
,bdate_range
, andperiod_range
factory functions - Robust frequency inference function infer_freq and
inferred_freq
property of DatetimeIndex, with option to infer frequency on construction of DatetimeIndex - to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or list of strings to datetime64
- Optimized support for datetime64-dtype data in Series and DataFrame columns
- New NaT (Not-a-Time) type to represent NA in timestamp arrays
- Optimize Series.asof for looking up “as of” values for arrays of timestamps
- Milli, Micro, Nano date offset objects
- Can index time series with datetime.time objects to select all data at
particular time of day (
TimeSeries.at_time
) or between two times (TimeSeries.between_time
) - Add tshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag using shift
Other new features¶
- New cut and
qcut
functions (like R’s cut function) for computing a categorical variable from a continuous variable by binning values either into value-based (cut
) or quantile-based (qcut
) bins - Rename
Factor
toCategorical
and add a number of usability features - Add limit argument to fillna/reindex
- More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in particular order with given names
- Add flexible replace method for efficiently substituting values
- Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates
- Add comments option to parser functions: read_csv, etc.
- Add :ref`dayfirst <io.dayfirst>` option to parser functions for parsing international DD/MM/YYYY dates
- Allow the user to specify the CSV reader dialect to control quoting etc.
- Handling thousands separators in read_csv to improve integer parsing.
- Enable unstacking of multiple levels in one shot. Alleviate
pivot_table
bugs (empty columns being introduced) - Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
- Add first, last, min, max, and prod optimized GroupBy functions
- New ordered_merge function
- Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series
- Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal
- Add ‘kde’ plot option for density plots
- Support for converting DataFrame to R data.frame through rpy2
- Improved support for complex numbers in Series and DataFrame
- Add pct_change method to all data structures
- Add max_colwidth configuration option for DataFrame console output
- Interpolate Series values using index values
- Can select multiple columns from GroupBy
- Add update methods to Series/DataFrame for updating values in place
- Add
any
andall
method to DataFrame
New plotting methods¶
Series.plot
now supports a secondary_y
option:
In [1]: plt.figure()
Out[1]: <matplotlib.figure.Figure at 0x7f3da9e38910>
In [2]: fx['FR'].plot(style='g')
Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3db822cc90>
In [3]: fx['IT'].plot(style='k--', secondary_y=True)
Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3dccba6590>
Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot
types. For example, 'kde'
is a new option:
In [4]: s = Series(np.concatenate((np.random.randn(1000),
...: np.random.randn(1000) * 0.5 + 3)))
...:
In [5]: plt.figure()
Out[5]: <matplotlib.figure.Figure at 0x7f3dce1bdf90>
In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3db9c29510>
In [7]: s.plot(kind='kde')
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3db9c29510>
See the plotting page for much more.
Other API changes¶
- Deprecation of
offset
,time_rule
, andtimeRule
arguments names in time series functions. Warnings will be printed until pandas 0.9 or 1.0.
Potential porting issues for pandas <= 0.7.3 users¶
The major change that may affect you in pandas 0.8.0 is that time series
indexes use NumPy’s datetime64
data type instead of dtype=object
arrays
of Python’s built-in datetime.datetime
objects. DateRange
has been
replaced by DatetimeIndex
but otherwise behaved identically. But, if you
have code that converts DateRange
or Index
objects that used to contain
datetime.datetime
values to plain NumPy arrays, you may have bugs lurking
with code using scalar values because you are handing control over to NumPy:
In [8]: import datetime
In [9]: rng = date_range('1/1/2000', periods=10)
In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', freq='D')
In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True
In [12]: rng_asarray = np.asarray(rng)
In [13]: scalar_val = rng_asarray[5]
In [14]: type(scalar_val)
Out[14]: numpy.datetime64
pandas’s Timestamp
object is a subclass of datetime.datetime
that has
nanosecond support (the nanosecond
field store the nanosecond value between
0 and 999). It should substitute directly into any code that used
datetime.datetime
values before. Thus, I recommend not casting
DatetimeIndex
to regular NumPy arrays.
If you have code that requires an array of datetime.datetime
objects, you
have a couple of options. First, the asobject
property of DatetimeIndex
produces an array of Timestamp
objects:
In [15]: stamp_array = rng.asobject
In [16]: stamp_array
Out[16]:
Index([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00,
2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00,
2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00,
2000-01-10 00:00:00],
dtype='object')
In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', freq='D')
To get an array of proper datetime.datetime
objects, use the
to_pydatetime
method:
In [18]: dt_array = rng.to_pydatetime()
In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),
datetime.datetime(2000, 1, 2, 0, 0),
datetime.datetime(2000, 1, 3, 0, 0),
datetime.datetime(2000, 1, 4, 0, 0),
datetime.datetime(2000, 1, 5, 0, 0),
datetime.datetime(2000, 1, 6, 0, 0),
datetime.datetime(2000, 1, 7, 0, 0),
datetime.datetime(2000, 1, 8, 0, 0),
datetime.datetime(2000, 1, 9, 0, 0),
datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)
In [20]: dt_array[5]
Out[20]: datetime.datetime(2000, 1, 6, 0, 0)
matplotlib knows how to handle datetime.datetime
but not Timestamp
objects. While I recommend that you plot time series using TimeSeries.plot
,
you can either use to_pydatetime
or register a converter for the Timestamp
type. See matplotlib documentation for more on this.
Warning
There are bugs in the user-facing API with the nanosecond datetime64 unit
in NumPy 1.6. In particular, the string version of the array shows garbage
values, and conversion to dtype=object
is similarly broken.
In [21]: rng = date_range('1/1/2000', periods=10)
In [22]: rng
Out[22]:
DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',
'2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
'2000-01-09', '2000-01-10'],
dtype='datetime64[ns]', freq='D')
In [23]: np.asarray(rng)
Out[23]:
array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
'2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
'2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
'2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
'2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'], dtype='datetime64[ns]')
In [24]: converted = np.asarray(rng, dtype=object)
In [25]: converted[5]
Out[25]: 947116800000000000L
Trust me: don’t panic. If you are using NumPy 1.6 and restrict your
interaction with datetime64
values to pandas’s API you will be just
fine. There is nothing wrong with the data-type (a 64-bit integer
internally); all of the important data processing happens in pandas and is
heavily tested. I strongly recommend that you do not work directly with
datetime64 arrays in NumPy 1.6 and only use the pandas API.
Support for non-unique indexes: In the latter case, you may have code
inside a try:... catch:
block that failed due to the index not being
unique. In many cases it will no longer fail (some method like append
still
check for uniqueness unless disabled). However, all is not lost: you can
inspect index.is_unique
and raise an exception explicitly if it is
False
or go to a different code branch.
v.0.7.3 (April 12, 2012)¶
This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a complete list.
New features¶
- New fixed width file reader,
read_fwf
- New scatter_matrix function for making a scatter plot matrix
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)
- Add
stacked
argument to Series and DataFrame’splot
method for stacked bar plots.
df.plot(kind='bar', stacked=True)
df.plot(kind='barh', stacked=True)
- Add log x and y scaling options to
DataFrame.plot
andSeries.plot
- Add
kurt
methods to Series and DataFrame for computing kurtosis
NA Boolean Comparison API Change¶
Reverted some changes to how NA values (represented typically as NaN
or
None
) are handled in non-numeric Series:
In [1]: series = Series(['Steve', np.nan, 'Joe'])
In [2]: series == 'Steve'
Out[2]:
0 True
1 False
2 False
dtype: bool
In [3]: series != 'Steve'
Out[3]:
0 False
1 True
2 True
dtype: bool
In comparisons, NA / NaN will always come through as False
except with
!=
which is True
. Be very careful with boolean arithmetic, especially
negation, in the presence of NA data. You may wish to add an explicit NA
filter into boolean array operations if you are worried about this:
In [4]: mask = series == 'Steve'
In [5]: series[mask & series.notnull()]
Out[5]:
0 Steve
dtype: object
While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach was taken. This issue may be revisited at some point in the future.
Other API Changes¶
When calling apply
on a grouped Series, the return value will also be a
Series, to be more consistent with the groupby
behavior with DataFrame:
In [6]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : np.random.randn(8), 'D' : np.random.randn(8)})
...:
In [7]: df
Out[7]:
A B C D
0 foo one 0.219405 -1.079181
1 bar one -0.342863 -1.631882
2 foo two -0.032419 0.237288
3 bar three -1.581534 0.514679
4 foo two -0.912061 -1.488101
5 bar two 0.209500 1.018514
6 foo one -0.675890 -1.488840
7 foo three 0.055228 -1.355434
[8 rows x 4 columns]
In [8]: grouped = df.groupby('A')['C']
In [9]: grouped.describe()
Out[9]:
A
bar count 3.000000
mean -0.571633
std 0.917171
min -1.581534
25% -0.962199
50% -0.342863
75% -0.066682
...
foo mean -0.269148
std 0.494652
min -0.912061
25% -0.675890
50% -0.032419
75% 0.055228
max 0.219405
Name: C, dtype: float64
In [10]: grouped.apply(lambda x: x.order()[-2:]) # top 2 values
Out[10]:
A
bar 1 -0.342863
5 0.209500
foo 7 0.055228
0 0.219405
Name: C, dtype: float64
v.0.7.2 (March 16, 2012)¶
This release targets bugs in 0.7.1, and adds a few minor features.
New features¶
- Add additional tie-breaking methods in DataFrame.rank (GH874)
- Add ascending parameter to rank in Series, DataFrame (GH875)
- Add coerce_float option to DataFrame.from_records (GH893)
- Add sort_columns parameter to allow unsorted plots (GH918)
- Enable column access via attributes on GroupBy (GH882)
- Can pass dict of values to DataFrame.fillna (GH661)
- Can select multiple hierarchical groups by passing list of values in .ix (GH134)
- Add
axis
option to DataFrame.fillna (GH174)- Add level keyword to
drop
for dropping values from a level (GH159)
v.0.7.1 (February 29, 2012)¶
This release includes a few new features and addresses over a dozen bugs in 0.7.0.
New features¶
- Add
to_clipboard
function to pandas namespace for writing objects to the system clipboard (GH774)- Add
itertuples
method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)- Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
- Add fill_value option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH787)
- Add
between
method to Series (GH802)- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl
v.0.7.0 (February 9, 2012)¶
New features¶
- New unified merge function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New unified concatenation function for concatenating
Series, DataFrame or Panel objects along an axis. Can form union or
intersection of the other axes. Improves performance of
Series.append
andDataFrame.append
(GH468, GH479, GH273) - Can pass multiple DataFrames to
DataFrame.append to concatenate (stack) and multiple Series to
Series.append
too - Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)
- You can now set multiple columns in a
DataFrame via
__getitem__
, useful for transformation (GH342) - Handle differently-indexed output values in
DataFrame.apply
(GH498)
In [1]: df = DataFrame(randn(10, 4))
In [2]: df.apply(lambda x: x.describe())
Out[2]:
0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean 0.448104 0.052501 0.058434 0.008207
std 0.784159 0.676134 0.959629 1.126010
min -1.275249 -1.200953 -1.819334 -1.607906
25% 0.100811 -0.095948 -0.365166 -0.973095
50% 0.709636 0.071581 0.116057 0.179112
75% 0.851809 0.478706 0.616168 0.807868
max 1.437656 1.051356 1.387310 1.521442
[8 rows x 4 columns]
- Add
reorder_levels
method to Series and DataFrame (GH534) - Add dict-like
get
function to DataFrame and Panel (GH521) - Add
DataFrame.iterrows
method for efficiently iterating through the rows of a DataFrame - Add
DataFrame.to_panel
with code adapted fromLongPanel.to_long
- Add
reindex_axis
method added to DataFrame - Add
level
option to binary arithmetic functions onDataFrame
andSeries
- Add
level
option to thereindex
andalign
methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others) - Add attribute-based item access to
Panel
and add IPython completion (GH563) - Add
logy
option toSeries.plot
for log-scaling on the Y axis - Add
index
andheader
options toDataFrame.to_string
- Can pass multiple DataFrames to
DataFrame.join
to join on index (GH115) - Can pass multiple Panels to
Panel.join
(GH115) - Added
justify
argument toDataFrame.to_string
to allow different alignment of column headers - Add
sort
option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595) - Can pass MaskedArray to Series constructor (GH563)
- Add Panel item access via attributes and IPython completion (GH554)
- Implement
DataFrame.lookup
, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) - Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
- Can call
cummin
andcummax
on Series and DataFrame to get cumulative minimum and maximum, respectively (GH647) value_range
added as utility function to get min and max of a dataframe (GH288)- Added
encoding
argument toread_csv
,read_table
,to_csv
andfrom_csv
for non-ascii text (GH717) - Added
abs
method to pandas objects - Added
crosstab
function for easily computing frequency tables - Added
isin
method to index objects - Added
level
argument toxs
method of DataFrame.
API Changes to integer indexing¶
One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how integer indexes are handled with regard to label-based indexing. Here is an example:
In [3]: s = Series(randn(10), index=range(0, 20, 2))
In [4]: s
Out[4]:
0 0.679919
2 -0.457147
4 0.041867
6 1.503116
8 -0.841265
10 -1.578003
12 -0.273728
14 1.755240
16 -0.705788
18 -0.351950
dtype: float64
In [5]: s[0]
Out[5]: 0.67991862351992061
In [6]: s[2]
Out[6]: -0.45714692729799072
In [7]: s[4]
Out[7]: 0.041867372914288915
This is all exactly identical to the behavior before. However, if you ask for a
key not contained in the Series, in versions 0.6.1 and prior, Series would
fall back on a location-based lookup. This now raises a KeyError
:
In [2]: s[1]
KeyError: 1
This change also has the same impact on DataFrame:
In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))
In [4]: df
0 1 2 3
0 0.88427 0.3363 -0.1787 0.03162
2 0.14451 -0.1415 0.2504 0.58374
4 -1.44779 -0.9186 -1.4996 0.27163
6 -0.26598 -2.4184 -0.2658 0.11503
8 -0.58776 0.3144 -0.8566 0.61941
10 0.10940 -0.7175 -1.0108 0.47990
12 -1.16919 -0.3087 -0.6049 -0.43544
14 -0.07337 0.3410 0.0424 -0.16037
In [5]: df.ix[3]
KeyError: 3
In order to support purely integer-based indexing, the following methods have been added:
Method | Description |
---|---|
Series.iget_value(i) |
Retrieve value stored at location i |
Series.iget(i) |
Alias for iget_value |
DataFrame.irow(i) |
Retrieve the i -th row |
DataFrame.icol(j) |
Retrieve the j -th column |
DataFrame.iget_value(i, j) |
Retrieve the value at row i and column j |
API tweaks regarding label-based slicing¶
Label-based slicing using ix
now requires that the index be sorted
(monotonic) unless both the start and endpoint are contained in the index:
In [8]: s = Series(randn(6), index=list('gmkaec'))
In [9]: s
Out[9]:
g 1.507974
m 0.419219
k 0.647633
a -0.147670
e -0.759803
c -0.757308
dtype: float64
Then this is OK:
In [10]: s.ix['k':'e']
Out[10]:
k 0.647633
a -0.147670
e -0.759803
dtype: float64
But this is not:
In [12]: s.ix['b':'h']
KeyError 'b'
If the index had been sorted, the “range selection” would have been possible:
In [11]: s2 = s.sort_index()
In [12]: s2
Out[12]:
a -0.147670
c -0.757308
e -0.759803
g 1.507974
k 0.647633
m 0.419219
dtype: float64
In [13]: s2.ix['b':'h']
Out[13]:
c -0.757308
e -0.759803
g 1.507974
dtype: float64
Changes to Series []
operator¶
As as notational convenience, you can pass a sequence of labels or a label
slice to a Series when getting and setting values via []
(i.e. the
__getitem__
and __setitem__
methods). The behavior will be the same as
passing similar input to ix
except in the case of integer indexing:
In [14]: s = Series(randn(6), index=list('acegkm'))
In [15]: s
Out[15]:
a -1.921164
c -1.093529
e -0.592157
g -0.715074
k -0.616193
m -0.335468
dtype: float64
In [16]: s[['m', 'a', 'c', 'e']]
Out[16]:
m -0.335468
a -1.921164
c -1.093529
e -0.592157
dtype: float64
In [17]: s['b':'l']
Out[17]:
c -1.093529
e -0.592157
g -0.715074
k -0.616193
dtype: float64
In [18]: s['c':'k']
Out[18]:
c -1.093529
e -0.592157
g -0.715074
k -0.616193
dtype: float64
In the case of integer indexes, the behavior will be exactly as before
(shadowing ndarray
):
In [19]: s = Series(randn(6), index=range(0, 12, 2))
In [20]: s[[4, 0, 2]]
Out[20]:
4 0.886170
0 -0.392051
2 -0.189537
dtype: float64
In [21]: s[1:5]
Out[21]:
2 -0.189537
4 0.886170
6 -1.125894
8 0.319635
dtype: float64
If you wish to do indexing with sequences and slicing on an integer index with
label semantics, use ix
.
Other API Changes¶
- The deprecated
LongPanel
class has been completely removed - If
Series.sort
is called on a column of a DataFrame, an exception will now be raised. Before it was possible to accidentally mutate a DataFrame’s column by doingdf[col].sort()
instead of the side-effect free methoddf[col].order()
(GH316) - Miscellaneous renames and deprecations which will (harmlessly) raise
FutureWarning
drop
added as an optional parameter toDataFrame.reset_index
(GH699)
Performance improvements¶
- Cythonized GroupBy aggregations no longer presort the data, thus achieving a significant speedup (GH93). GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data type in Cython (GH496).
- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in Series.to_string, add length option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of Series.__getitem__ for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling
reset_index
on DataFrame with a regular (non-hierarchical) index (GH476) - Use Cythonized groupers when possible in Series/DataFrame stat ops with
level
parameter passed (GH545) - Ported skiplist data structure to C to speed up
rolling_median
by about 5-10x in most typical use cases (GH374)
v.0.6.1 (December 13, 2011)¶
New features¶
- Can append single rows (as Series) to a DataFrame
- Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)
- Added
get_value
andset_value
methods to Series, DataFrame, and Panel for very low-overhead access (>2x faster in many cases) to scalar elements (GH437, GH438).set_value
is capable of producing an enlarged object. - Add PyQt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments and an axis option (GH461)
- Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray (GH463)
- Better console printing options (GH453)
- Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add margins option to pivot_table for computing subgroup aggregates (GH114)
- Add
Series.from_csv
function (GH482) - Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)
- MultiIndex.get_level_values can accept the level name
Performance improvements¶
- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
- Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
- Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
- Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)
v.0.6.0 (November 25, 2011)¶
New Features¶
- Added
melt
function topandas.core.reshape
- Added
level
parameter to group by level in Series and DataFrame descriptive statistics (GH313) - Added
head
andtail
methods to Series, analogous to to DataFrame (GH296) - Added
Series.isin
function which checks if each value is contained in a passed sequence (GH289) - Added
float_format
option toSeries.to_string
- Added
skip_footer
(GH291) andconverters
(GH343) options toread_csv
andread_table
- Added
drop_duplicates
andduplicated
functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319) - Implemented operators ‘&’, ‘|’, ‘^’, ‘-‘ on DataFrame (GH347)
- Added
Series.mad
, mean absolute deviation - Added
QuarterEnd
DateOffset (GH321) - Added
dot
to DataFrame (GH65) - Added
orient
option toPanel.from_dict
(GH359, GH301) - Added
orient
option toDataFrame.from_dict
- Added passing list of tuples or list of lists to
DataFrame.from_records
(GH357) - Added multiple levels to groupby (GH103)
- Allow multiple columns in
by
argument ofDataFrame.sort_index
(GH92, GH362) - Added fast
get_value
andput_value
methods to DataFrame (GH360) - Added
cov
instance methods to Series and DataFrame (GH194, GH362) - Added
kind='bar'
option toDataFrame.plot
(GH348) - Added
idxmin
andidxmax
to Series and DataFrame (GH286) - Added
read_clipboard
function to parse DataFrame from clipboard (GH300) - Added
nunique
function to Series for counting unique elements (GH297) - Made DataFrame constructor use Series name if no columns passed (GH373)
- Support regular expressions in read_table/read_csv (GH364)
- Added
DataFrame.to_html
for writing DataFrame to HTML (GH387) - Added support for MaskedArray data in DataFrame, masked values converted to NaN (GH396)
- Added
DataFrame.boxplot
function (GH368) - Can pass extra args, kwds to DataFrame.apply (GH376)
- Implement
DataFrame.join
with vectoron
argument (GH312) - Added
legend
boolean flag toDataFrame.plot
(GH324) - Can pass multiple levels to
stack
andunstack
(GH370) - Can pass multiple values columns to
pivot_table
(GH381) - Use Series name in GroupBy for result index (GH363)
- Added
raw
option toDataFrame.apply
for performance if only need ndarray (GH309) - Added proper, tested weighted least squares to standard and panel OLS (GH303)
Performance Enhancements¶
- VBENCH Cythonized
cache_readonly
, resulting in substantial micro-performance enhancements throughout the codebase (GH361) - VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (GH309)
- VBENCH Improved performance of
MultiIndex.from_tuples
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations
- VBENCH + DOCUMENT Add
raw
option toDataFrame.apply
for getting better performance when - VBENCH Faster cythonized count by level in Series and DataFrame (GH341)
- VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
- VBENCH New Cython vectorized function
map_infer
speeds upSeries.apply
andSeries.map
significantly when passed elementwise Python function, motivated by (GH355) - VBENCH Significantly improved performance of
Series.order
, which also makes np.unique called on a Series faster (GH327) - VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)
v.0.5.0 (October 24, 2011)¶
New Features¶
- Added
DataFrame.align
method with standard join options - Added
parse_dates
option toread_csv
andread_table
methods to optionally try to parse dates in the index columns - Added
nrows
,chunksize
, anditerator
arguments toread_csv
andread_table
. The last two return a newTextParser
class capable of lazily iterating through chunks of a flat file (GH242) - Added ability to join on multiple columns in
DataFrame.join
(GH214) - Added private
_get_duplicates
function toIndex
for identifying duplicate values more easily (ENH5c) - Added column attribute access to DataFrame.
- Added Python tab completion hook for DataFrame columns. (GH233, GH230)
- Implemented
Series.describe
for Series containing objects (GH241) - Added inner join option to
DataFrame.join
when joining on key(s) (GH248) - Implemented selecting DataFrame columns by passing a list to
__getitem__
(GH253) - Implemented & and | to intersect / union Index objects, respectively (GH261)
- Added
pivot_table
convenience function to pandas namespace (GH234) - Implemented
Panel.rename_axis
function (GH243) - DataFrame will show index level names in console output (GH334)
- Implemented
Panel.take
- Added
set_eng_float_format
for alternate DataFrame floating point string formatting (ENH61) - Added convenience
set_index
function for creating a DataFrame index from its existing columns - Implemented
groupby
hierarchical index level name (GH223) - Added support for different delimiters in
DataFrame.to_csv
(GH244) - TODO: DOCS ABOUT TAKE METHODS
Performance Enhancements¶
- VBENCH Major performance improvements in file parsing functions
read_csv
andread_table
- VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
- VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
- VBENCH Improved speed of
DataFrame.xs
on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215) - VBENCH With new
DataFrame.align
method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%. - VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)
- VBENCH Significantly speed up DataFrame
__repr__
andcount
on large mixed-type DataFrame objects
v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)¶
New Features¶
- Added Python 3 support using 2to3 (GH200)
- Added
name
attribute toSeries
, now prints as part ofSeries.__repr__
- Added instance methods
isnull
andnotnull
to Series (GH209, GH203) - Added
Series.align
method for aligning two series with choice of join method (ENH56) - Added method
get_level_values
toMultiIndex
(GH188) - Set values in mixed-type
DataFrame
objects via.ix
indexing attribute (GH135) - Added new
DataFrame
methodsget_dtype_counts
and propertydtypes
(ENHdc) - Added ignore_index option to
DataFrame.append
to stack DataFrames (ENH1b) read_csv
tries to sniff delimiters usingcsv.Sniffer
(GH146)read_csv
can read multiple columns into aMultiIndex
; DataFrame’sto_csv
method writes out a correspondingMultiIndex
(GH151)DataFrame.rename
has a newcopy
parameter to rename a DataFrame in place (ENHed)- Enable unstacking by name (GH142)
- Enable
sortlevel
to work by level (GH141)
Performance Enhancements¶
- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
- Improved performance of
isnull
andnotnull
, a regression from v0.3.0 (GH187) - Refactored code related to
DataFrame.join
so that intermediate aligned copies of the data in eachDataFrame
argument do not need to be created. Substantial performance increases result (GH176) - Substantially improved performance of generic
Index.intersection
andIndex.union
- Implemented
BlockManager.take
resulting in significantly fastertake
performance on mixed-typeDataFrame
objects (GH104) - Improved performance of
Series.sort_index
- Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals that were slowing down slicing operations to retrieve groups
- Optimized
_ensure_index
function resulting in performance savings in type-checking Index objects - Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and related functions