pandas.DataFrame.map#
- DataFrame.map(func, na_action=None, **kwargs)[source]#
Apply a function to a Dataframe elementwise.
Added in version 2.1.0: DataFrame.applymap was deprecated and renamed to DataFrame.map.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
- Parameters:
- funccallable
Python function, returns a single value from a single value.
- na_action{None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to func.
- **kwargs
Additional keyword arguments to pass as keywords arguments to func.
- Returns:
- DataFrame
Transformed DataFrame.
See also
DataFrame.apply
Apply a function along input axis of DataFrame.
DataFrame.replace
Replace values given in to_replace with value.
Series.map
Apply a function elementwise on a Series.
Examples
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567
>>> df.map(lambda x: len(str(x))) 0 1 0 3 4 1 5 5
Like Series.map, NA values can be ignored:
>>> df_copy = df.copy() >>> df_copy.iloc[0, 0] = pd.NA >>> df_copy.map(lambda x: len(str(x)), na_action='ignore') 0 1 0 NaN 4 1 5.0 5
It is also possible to use map with functions that are not lambda functions:
>>> df.map(round, ndigits=1) 0 1 0 1.0 2.1 1 3.4 4.6
Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.
>>> df.map(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489
But it’s better to avoid map in that case.
>>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489