pandas.DataFrame.set_axis#
- DataFrame.set_axis(labels, *, axis=0, copy=None)[source]#
Assign desired index to given axis.
Indexes for column or row labels can be changed by assigning a list-like or Index.
- Parameters:
- labelslist-like, Index
The values for the new index.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to update. The value 0 identifies the rows. For Series this parameter is unused and defaults to 0.
- copybool, default True
Whether to make a copy of the underlying data.
Note
The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.
You can already get the future behavior and improvements through enabling copy on write
pd.options.mode.copy_on_write = True
- Returns:
- DataFrame
An object of type DataFrame.
See also
DataFrame.rename_axis
Alter the name of the index or columns.
Examples
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
Change the row labels.
>>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6
Change the column labels.
>>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6