pandas.core.groupby.DataFrameGroupBy.aggregate#
- DataFrameGroupBy.aggregate(func=None, *args, engine=None, engine_kwargs=None, **kwargs)[source]#
Aggregate using one or more operations over the specified axis.
- Parameters:
- funcfunction, str, list, dict or None
Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']dict of axis labels -> functions, function names or list of such.
None, in which case
**kwargsare used with Named Aggregation. Here the output has one column for each element in**kwargs. The name of the column is keyword, whereas the value determines the aggregation used to compute the values in the column.Can also accept a Numba JIT function with
engine='numba'specified. Only passing a single function is supported with this engine.If the
'numba'engine is chosen, the function must be a user defined function withvaluesandindexas the first and second arguments respectively in the function signature. Each group’s index will be passed to the user defined function and optionally available for use.
- *args
Positional arguments to pass to func.
- enginestr, default None
'cython': Runs the function through C-extensions from cython.'numba': Runs the function through JIT compiled code from numba.None: Defaults to'cython'or globally settingcompute.use_numba
- engine_kwargsdict, default None
For
'cython'engine, there are no acceptedengine_kwargsFor
'numba'engine, the engine can acceptnopython,nogilandparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}and will be applied to the function
- **kwargs
If
funcis None,**kwargsare used to define the output names and aggregations via Named Aggregation. Seefuncentry.Otherwise, keyword arguments to be passed into func.
- Returns:
- DataFrame
See also
DataFrame.groupby.applyApply function func group-wise and combine the results together.
DataFrame.groupby.transformTransforms the Series on each group based on the given function.
DataFrame.aggregateAggregate using one or more operations over the specified axis.
Notes
When using
engine='numba', there will be no “fall back” behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried.Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
Changed in version 1.3.0: The resulting dtype will reflect the return value of the passed
func, see the examples below.Examples
>>> data = {"A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860]} >>> df = pd.DataFrame(data) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860
The aggregation is for each column.
>>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860
Multiple aggregations
>>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767
Select a column for aggregation
>>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4
User-defined function for aggregation
>>> df.groupby('A').agg(lambda x: sum(x) + 2) B C A 1 5 2.590715 2 9 2.704907
Different aggregations per column
>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590715 2 3 4 0.704907
To control the output names with different aggregations per column, pandas supports “named aggregation”
>>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum") ... ) b_min c_sum A 1 1 0.590715 2 3 0.704907
The keywords are the output column names
The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the
pandas.NamedAggnamedtuple with the fields['column', 'aggfunc']to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias.
See Named aggregation for more.
Changed in version 1.3.0: The resulting dtype will reflect the return value of the aggregating function.
>>> df.groupby("A")[["B"]].agg(lambda x: x.astype(float).min()) B A 1 1.0 2 3.0