pandas.core.resample.Resampler.sum#
- final Resampler.sum(numeric_only=False, min_count=0)[source]#
Compute sum of group values.
This method provides a simple way to compute the sum of values within each resampled group, particularly useful for aggregating time-based data into daily, monthly, or yearly sums.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
Changed in version 2.0.0: numeric_only no longer accepts
None
.- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.
- Returns:
- Series or DataFrame
Computed sum of values within each group.
See also
core.resample.Resampler.mean
Compute mean of groups, excluding missing values.
core.resample.Resampler.count
Compute count of group, excluding missing values.
DataFrame.resample
Resample time-series data.
Series.sum
Return the sum of the values over the requested axis.
Examples
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> ser.resample("MS").sum() 2023-01-01 3 2023-02-01 7 Freq: MS, dtype: int64