Computational tools

Statistical functions

Percent Change

Both Series and DataFrame has a method pct_change to compute the percent change over a given number of periods (using fill_method to fill NA/null values).

In [1]: ser = Series(randn(8))

In [2]: ser.pct_change()

0         NaN
1   -1.602976
2    4.334938
3   -0.247456
4   -2.067345
5   -1.142903
6   -1.688214
7   -9.759729
dtype: float64
In [3]: df = DataFrame(randn(10, 4))

In [4]: df.pct_change(periods=3)

          0         1         2         3
0       NaN       NaN       NaN       NaN
1       NaN       NaN       NaN       NaN
2       NaN       NaN       NaN       NaN
3 -0.218320 -1.054001  1.987147 -0.510183
4 -0.439121 -1.816454  0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058  0.036094 -0.067696
8  2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977  2.324558 -1.003744 -0.371806

Covariance

The Series object has a method cov to compute covariance between series (excluding NA/null values).

In [5]: s1 = Series(randn(1000))

In [6]: s2 = Series(randn(1000))

In [7]: s1.cov(s2)
0.0006801088174310957

Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

In [8]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [9]: frame.cov()

          a         b         c         d         e
a  1.000882 -0.003177 -0.002698 -0.006889  0.031912
b -0.003177  1.024721  0.000191  0.009212  0.000857
c -0.002698  0.000191  0.950735 -0.031743 -0.005087
d -0.006889  0.009212 -0.031743  1.002983 -0.047952
e  0.031912  0.000857 -0.005087 -0.047952  1.042487

DataFrame.cov also supports an optional min_periods keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.

In [10]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])

In [11]: frame.ix[:5, 'a'] = np.nan

In [12]: frame.ix[5:10, 'b'] = np.nan

In [13]: frame.cov()

          a         b         c
a  1.210090 -0.430629  0.018002
b -0.430629  1.240960  0.347188
c  0.018002  0.347188  1.301149

In [14]: frame.cov(min_periods=12)

          a         b         c
a  1.210090       NaN  0.018002
b       NaN  1.240960  0.347188
c  0.018002  0.347188  1.301149

Correlation

Several methods for computing correlations are provided. Several kinds of correlation methods are provided:

Method name Description
pearson (default) Standard correlation coefficient
kendall Kendall Tau correlation coefficient
spearman Spearman rank correlation coefficient

All of these are currently computed using pairwise complete observations.

In [15]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [16]: frame.ix[::2] = np.nan

# Series with Series
In [17]: frame['a'].corr(frame['b'])
0.013479040400098763

In [18]: frame['a'].corr(frame['b'], method='spearman')
-0.0072898851595406388

# Pairwise correlation of DataFrame columns
In [19]: frame.corr()

          a         b         c         d         e
a  1.000000  0.013479 -0.049269 -0.042239 -0.028525
b  0.013479  1.000000 -0.020433 -0.011139  0.005654
c -0.049269 -0.020433  1.000000  0.018587 -0.054269
d -0.042239 -0.011139  0.018587  1.000000 -0.017060
e -0.028525  0.005654 -0.054269 -0.017060  1.000000

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like cov, corr also supports the optional min_periods keyword:

In [20]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])

In [21]: frame.ix[:5, 'a'] = np.nan

In [22]: frame.ix[5:10, 'b'] = np.nan

In [23]: frame.corr()

          a         b         c
a  1.000000 -0.076520  0.160092
b -0.076520  1.000000  0.135967
c  0.160092  0.135967  1.000000

In [24]: frame.corr(min_periods=12)

          a         b         c
a  1.000000       NaN  0.160092
b       NaN  1.000000  0.135967
c  0.160092  0.135967  1.000000

A related method corrwith is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

In [25]: index = ['a', 'b', 'c', 'd', 'e']

In [26]: columns = ['one', 'two', 'three', 'four']

In [27]: df1 = DataFrame(randn(5, 4), index=index, columns=columns)

In [28]: df2 = DataFrame(randn(4, 4), index=index[:4], columns=columns)

In [29]: df1.corrwith(df2)

one     -0.125501
two     -0.493244
three    0.344056
four     0.004183
dtype: float64

In [30]: df2.corrwith(df1, axis=1)

a   -0.675817
b    0.458296
c    0.190809
d   -0.186275
e         NaN
dtype: float64

Data ranking

The rank method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

In [31]: s = Series(np.random.randn(5), index=list('abcde'))

In [32]: s['d'] = s['b'] # so there's a tie

In [33]: s.rank()

a    5.0
b    2.5
c    1.0
d    2.5
e    4.0
dtype: float64

rank is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are excluded from the ranking.

In [34]: df = DataFrame(np.random.randn(10, 6))

In [35]: df[4] = df[2][:5] # some ties

In [36]: df

          0         1         2         3         4         5
0 -0.904948 -1.163537 -1.457187  0.135463 -1.457187  0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2  0.401965  1.460840  1.256057  1.308127  1.256057  0.876004
3  0.205954  0.369552 -0.669304  0.038378 -0.669304  1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246  0.908114  0.204848       NaN  0.463347
6  0.376892  0.959292  0.095572 -0.593740       NaN -0.069180
7 -1.002601  1.957794 -0.120708  0.094214       NaN -1.467422
8 -0.547231  0.664402 -0.519424 -0.073254       NaN -1.263544
9 -0.250277 -0.237428 -1.056443  0.419477       NaN  1.375064

In [37]: df.rank(1)

   0  1    2  3    4  5
0  4  3  1.5  5  1.5  6
1  2  6  4.5  1  4.5  3
2  1  6  3.5  5  3.5  2
3  4  5  1.5  3  1.5  6
4  5  3  1.5  4  1.5  6
5  1  2  5.0  3  NaN  4
6  4  5  3.0  1  NaN  2
7  2  5  3.0  4  NaN  1
8  2  5  3.0  4  NaN  1
9  2  3  1.0  4  NaN  5

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.

rank supports different tie-breaking methods, specified with the method parameter:

  • average : average rank of tied group
  • min : lowest rank in the group
  • max : highest rank in the group
  • first : ranks assigned in the order they appear in the array

Moving (rolling) statistics / moments

For working with time series data, a number of functions are provided for computing common moving or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. All of these methods are in the pandas namespace, but otherwise they can be found in pandas.stats.moments.

Function Description
rolling_count Number of non-null observations
rolling_sum Sum of values
rolling_mean Mean of values
rolling_median Arithmetic median of values
rolling_min Minimum
rolling_max Maximum
rolling_std Unbiased standard deviation
rolling_var Unbiased variance
rolling_skew Unbiased skewness (3rd moment)
rolling_kurt Unbiased kurtosis (4th moment)
rolling_quantile Sample quantile (value at %)
rolling_apply Generic apply
rolling_cov Unbiased covariance (binary)
rolling_corr Correlation (binary)
rolling_corr_pairwise Pairwise correlation of DataFrame columns
rolling_window Moving window function

Generally these methods all have the same interface. The binary operators (e.g. rolling_corr) take two Series or DataFrames. Otherwise, they all accept the following arguments:

  • window: size of moving window
  • min_periods: threshold of non-null data points to require (otherwise result is NA)
  • freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument time_rule was used instead of freq that referred to the legacy time rule constants

These functions can be applied to ndarrays or Series objects:

In [38]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))

In [39]: ts = ts.cumsum()

In [40]: ts.plot(style='k--')
<matplotlib.axes.AxesSubplot at 0x635b4d0>

In [41]: rolling_mean(ts, 60).plot(style='k')
<matplotlib.axes.AxesSubplot at 0x635b4d0>
_images/rolling_mean_ex.png

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

In [42]: df = DataFrame(randn(1000, 4), index=ts.index,
   ....:                columns=['A', 'B', 'C', 'D'])
   ....: 

In [43]: df = df.cumsum()

In [44]: rolling_sum(df, 60).plot(subplots=True)

array([<matplotlib.axes.AxesSubplot object at 0x5f7f390>,
       <matplotlib.axes.AxesSubplot object at 0x67483d0>,
       <matplotlib.axes.AxesSubplot object at 0x628e790>,
       <matplotlib.axes.AxesSubplot object at 0x5eef150>], dtype=object)
_images/rolling_mean_frame.png

The rolling_apply function takes an extra func argument and performs generic rolling computations. The func argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:

In [45]: mad = lambda x: np.fabs(x - x.mean()).mean()

In [46]: rolling_apply(ts, 60, mad).plot(style='k')
<matplotlib.axes.AxesSubplot at 0x5eef150>
_images/rolling_apply_ex.png

The rolling_window function performs a generic rolling window computation on the input data. The weights used in the window are specified by the win_type keyword. The list of recognized types are:

  • boxcar
  • triang
  • blackman
  • hamming
  • bartlett
  • parzen
  • bohman
  • blackmanharris
  • nuttall
  • barthann
  • kaiser (needs beta)
  • gaussian (needs std)
  • general_gaussian (needs power, width)
  • slepian (needs width).
In [47]: ser = Series(randn(10), index=date_range('1/1/2000', periods=10))

In [48]: rolling_window(ser, 5, 'triang')

2000-01-01         NaN
2000-01-02         NaN
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.622722
2000-01-06   -0.460623
2000-01-07   -0.229918
2000-01-08   -0.237308
2000-01-09   -0.335064
2000-01-10   -0.403449
Freq: D, dtype: float64

Note that the boxcar window is equivalent to rolling_mean:

In [49]: rolling_window(ser, 5, 'boxcar')

2000-01-01         NaN
2000-01-02         NaN
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.841164
2000-01-06   -0.779948
2000-01-07   -0.565487
2000-01-08   -0.502815
2000-01-09   -0.553755
2000-01-10   -0.472211
Freq: D, dtype: float64

In [50]: rolling_mean(ser, 5)

2000-01-01         NaN
2000-01-02         NaN
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.841164
2000-01-06   -0.779948
2000-01-07   -0.565487
2000-01-08   -0.502815
2000-01-09   -0.553755
2000-01-10   -0.472211
Freq: D, dtype: float64

For some windowing functions, additional parameters must be specified:

In [51]: rolling_window(ser, 5, 'gaussian', std=0.1)

2000-01-01         NaN
2000-01-02         NaN
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.261998
2000-01-06   -0.230600
2000-01-07    0.121276
2000-01-08   -0.136220
2000-01-09   -0.057945
2000-01-10   -0.199326
Freq: D, dtype: float64

By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be set at the center. This keyword is available in other rolling functions as well.

In [52]: rolling_window(ser, 5, 'boxcar')

2000-01-01         NaN
2000-01-02         NaN
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.841164
2000-01-06   -0.779948
2000-01-07   -0.565487
2000-01-08   -0.502815
2000-01-09   -0.553755
2000-01-10   -0.472211
Freq: D, dtype: float64

In [53]: rolling_window(ser, 5, 'boxcar', center=True)

2000-01-01         NaN
2000-01-02         NaN
2000-01-03   -0.841164
2000-01-04   -0.779948
2000-01-05   -0.565487
2000-01-06   -0.502815
2000-01-07   -0.553755
2000-01-08   -0.472211
2000-01-09         NaN
2000-01-10         NaN
Freq: D, dtype: float64

In [54]: rolling_mean(ser, 5, center=True)

2000-01-01         NaN
2000-01-02         NaN
2000-01-03   -0.841164
2000-01-04   -0.779948
2000-01-05   -0.565487
2000-01-06   -0.502815
2000-01-07   -0.553755
2000-01-08   -0.472211
2000-01-09         NaN
2000-01-10         NaN
Freq: D, dtype: float64

Binary rolling moments

rolling_cov and rolling_corr can compute moving window statistics about two Series or any combination of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:

  • two Series: compute the statistic for the pairing
  • DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame
  • DataFrame/DataFrame: compute statistic for matching column names, returning a DataFrame

For example:

In [55]: df2 = df[:20]

In [56]: rolling_corr(df2, df2['B'], window=5)

                   A   B         C         D
2000-01-01       NaN NaN       NaN       NaN
2000-01-02       NaN NaN       NaN       NaN
2000-01-03       NaN NaN       NaN       NaN
2000-01-04       NaN NaN       NaN       NaN
2000-01-05 -0.262853   1  0.334449  0.193380
2000-01-06 -0.083745   1 -0.521587 -0.556126
2000-01-07 -0.292940   1 -0.658532 -0.458128
2000-01-08  0.840416   1  0.796505 -0.498672
2000-01-09 -0.135275   1  0.753895 -0.634445
2000-01-10 -0.346229   1 -0.682232 -0.645681
2000-01-11 -0.365524   1 -0.775831 -0.561991
2000-01-12 -0.204761   1 -0.855874 -0.382232
2000-01-13  0.575218   1 -0.747531  0.167892
2000-01-14  0.519499   1 -0.687277  0.192822
2000-01-15  0.048982   1  0.167669 -0.061463
2000-01-16  0.217190   1  0.167564 -0.326034
2000-01-17  0.641180   1 -0.164780 -0.111487
2000-01-18  0.130422   1  0.322833  0.632383
2000-01-19  0.317278   1  0.384528  0.813656
2000-01-20  0.293598   1  0.159538  0.742381

Computing rolling pairwise correlations

In financial data analysis and other fields it’s common to compute correlation matrices for a collection of time series. More difficult is to compute a moving-window correlation matrix. This can be done using the rolling_corr_pairwise function, which yields a Panel whose items are the dates in question:

In [57]: correls = rolling_corr_pairwise(df, 50)

In [58]: correls[df.index[-50]]

          A         B         C         D
A  1.000000  0.604221  0.767429 -0.776170
B  0.604221  1.000000  0.461484 -0.381148
C  0.767429  0.461484  1.000000 -0.748863
D -0.776170 -0.381148 -0.748863  1.000000

You can efficiently retrieve the time series of correlations between two columns using ix indexing:

In [59]: correls.ix[:, 'A', 'C'].plot()
<matplotlib.axes.AxesSubplot at 0x78f4690>
_images/rolling_corr_pairwise_ex.png

Expanding window moment functions

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:

In [60]: rolling_mean(df, window=len(df), min_periods=1)[:5]

                   A         B         C         D
2000-01-01 -1.388345  3.317290  0.344542 -0.036968
2000-01-02 -1.123132  3.622300  1.675867  0.595300
2000-01-03 -0.628502  3.626503  2.455240  1.060158
2000-01-04 -0.768740  3.888917  2.451354  1.281874
2000-01-05 -0.824034  4.108035  2.556112  1.140723

In [61]: expanding_mean(df)[:5]

                   A         B         C         D
2000-01-01 -1.388345  3.317290  0.344542 -0.036968
2000-01-02 -1.123132  3.622300  1.675867  0.595300
2000-01-03 -0.628502  3.626503  2.455240  1.060158
2000-01-04 -0.768740  3.888917  2.451354  1.281874
2000-01-05 -0.824034  4.108035  2.556112  1.140723

Like the rolling_ functions, the following methods are included in the pandas namespace or can be located in pandas.stats.moments.

Function Description
expanding_count Number of non-null observations
expanding_sum Sum of values
expanding_mean Mean of values
expanding_median Arithmetic median of values
expanding_min Minimum
expanding_max Maximum
expanding_std Unbiased standard deviation
expanding_var Unbiased variance
expanding_skew Unbiased skewness (3rd moment)
expanding_kurt Unbiased kurtosis (4th moment)
expanding_quantile Sample quantile (value at %)
expanding_apply Generic apply
expanding_cov Unbiased covariance (binary)
expanding_corr Correlation (binary)
expanding_corr_pairwise Pairwise correlation of DataFrame columns

Aside from not having a window parameter, these functions have the same interfaces as their rolling_ counterpart. Like above, the parameters they all accept are:

  • min_periods: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. No NaNs will be output once min_periods non-null data points have been seen.
  • freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument time_rule was used instead of freq that referred to the legacy time rule constants

Note

The output of the rolling_ and expanding_ functions do not return a NaN if there are at least min_periods non-null values in the current window. This differs from cumsum, cumprod, cummax, and cummin, which return NaN in the output wherever a NaN is encountered in the input.

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the expanding_mean output for the previous time series dataset:

In [62]: ts.plot(style='k--')
<matplotlib.axes.AxesSubplot at 0x6372750>

In [63]: expanding_mean(ts).plot(style='k')
<matplotlib.axes.AxesSubplot at 0x6372750>
_images/expanding_mean_frame.png

Exponentially weighted moment functions

A related set of functions are exponentially weighted versions of many of the above statistics. A number of EW (exponentially weighted) functions are provided using the blending method. For example, where y_t is the result and x_t the input, we compute an exponentially weighted moving average as

y_t = \alpha y_{t-1} + (1 - \alpha) x_t

One must have 0 < \alpha \leq 1, but rather than pass \alpha directly, it’s easier to think about either the span or center of mass (com) of an EW moment:

\alpha =
 \begin{cases}
     \frac{2}{s + 1}, s = \text{span}\\
     \frac{1}{c + 1}, c = \text{center of mass}
 \end{cases}

You can pass one or the other to these functions but not both. Span corresponds to what is commonly called a “20-day EW moving average” for example. Center of mass has a more physical interpretation. For example, span = 20 corresponds to com = 9.5. Here is the list of functions available:

Function Description
ewma EW moving average
ewmvar EW moving variance
ewmstd EW moving standard deviation
ewmcorr EW moving correlation
ewmcov EW moving covariance

Here are an example for a univariate time series:

In [64]: plt.close('all')

In [65]: ts.plot(style='k--')
<matplotlib.axes.AxesSubplot at 0x6166150>

In [66]: ewma(ts, span=20).plot(style='k')
<matplotlib.axes.AxesSubplot at 0x6166150>
_images/ewma_ex.png

Note

The EW functions perform a standard adjustment to the initial observations whereby if there are fewer observations than called for in the span, those observations are reweighted accordingly.