Reshaping and Pivot Tables¶
Reshaping by pivoting DataFrame objects¶
Data is often stored in CSV files or databases in so-called “stacked” or “record” format:
In [1]: df
date variable value
0 2000-01-03 00:00:00 A 0.469112
1 2000-01-04 00:00:00 A -0.282863
2 2000-01-05 00:00:00 A -1.509059
3 2000-01-03 00:00:00 B -1.135632
4 2000-01-04 00:00:00 B 1.212112
5 2000-01-05 00:00:00 B -0.173215
6 2000-01-03 00:00:00 C 0.119209
7 2000-01-04 00:00:00 C -1.044236
8 2000-01-05 00:00:00 C -0.861849
9 2000-01-03 00:00:00 D -2.104569
10 2000-01-04 00:00:00 D -0.494929
11 2000-01-05 00:00:00 D 1.071804
For the curious here is how the above DataFrame was created:
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
N, K = frame.shape
data = {'value' : frame.values.ravel('F'),
'variable' : np.asarray(frame.columns).repeat(N),
'date' : np.tile(np.asarray(frame.index), K)}
return DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A we could do:
In [2]: df[df['variable'] == 'A']
date variable value
0 2000-01-03 00:00:00 A 0.469112
1 2000-01-04 00:00:00 A -0.282863
2 2000-01-05 00:00:00 A -1.509059
But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:
In [3]: df.pivot(index='date', columns='variable', values='value')
variable A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns whose topmost level indicates the respective value column:
In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot('date', 'variable')
In [6]: pivoted
value value2 \
variable A B C D A B
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429
variable C D
date
2000-01-03 0.238417 -4.209138
2000-01-04 -2.088472 -0.989859
2000-01-05 -1.723698 2.143608
You of course can then select subsets from the pivoted DataFrame:
In [7]: pivoted['value2']
variable A B C D
date
2000-01-03 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Reshaping by stacking and unstacking¶
Closely related to the pivot function are the related stack and unstack functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on hierarchical indexing). Here are essentially what these functions do:
- stack: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
- unstack: inverse operation from stack: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = zip(*[['bar', 'bar', 'baz', 'baz',
...: 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two',
...: 'one', 'two', 'one', 'two']])
...:
In [9]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [10]: df = DataFrame(randn(8, 2), index=index, columns=['A', 'B'])
In [11]: df2 = df[:4]
In [12]: df2
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
The stack function “compresses” a level in the DataFrame’s columns to produce either:
- A Series, in the case of a simple column Index
- A DataFrame, in the case of a MultiIndex in the columns
If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:
In [13]: stacked = df2.stack()
In [14]: stacked
first second
bar one A 0.721555
B -0.706771
two A -1.039575
B 0.271860
baz one A -0.424972
B 0.567020
two A 0.276232
B -1.087401
dtype: float64
With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:
In [15]: stacked.unstack()
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401
In [16]: stacked.unstack(1)
second one two
first
bar A 0.721555 -1.039575
B -0.706771 0.271860
baz A -0.424972 0.276232
B 0.567020 -1.087401
In [17]: stacked.unstack(0)
first bar baz
second
one A 0.721555 -0.424972
B -0.706771 0.567020
two A -1.039575 0.276232
B 0.271860 -1.087401
If the indexes have names, you can use the level names instead of specifying the level numbers:
In [18]: stacked.unstack('second')
second one two
first
bar A 0.721555 -1.039575
B -0.706771 0.271860
baz A -0.424972 0.276232
B 0.567020 -1.087401
You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.
These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sortlevel, of course). Here is a more complex example:
In [19]: columns = MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
....: ('B', 'cat'), ('A', 'dog')],
....: names=['exp', 'animal'])
....:
In [20]: df = DataFrame(randn(8, 4), index=index, columns=columns)
In [21]: df2 = df.ix[[0, 1, 2, 4, 5, 7]]
In [22]: df2
exp A B A
animal cat dog cat dog
first second
bar one -0.370647 -1.157892 -1.344312 0.844885
two 1.075770 -0.109050 1.643563 -1.469388
baz one 0.357021 -0.674600 -1.776904 -0.968914
foo one -0.013960 -0.362543 -0.006154 -0.923061
two 0.895717 0.805244 -1.206412 2.565646
qux two 0.410835 0.813850 0.132003 -0.827317
As mentioned above, stack can be called with a level argument to select which level in the columns to stack:
In [23]: df2.stack('exp')
animal cat dog
first second exp
bar one A -0.370647 0.844885
B -1.344312 -1.157892
two A 1.075770 -1.469388
B 1.643563 -0.109050
baz one A 0.357021 -0.968914
B -1.776904 -0.674600
foo one A -0.013960 -0.923061
B -0.006154 -0.362543
two A 0.895717 2.565646
B -1.206412 0.805244
qux two A 0.410835 -0.827317
B 0.132003 0.813850
In [24]: df2.stack('animal')
exp A B
first second animal
bar one cat -0.370647 -1.344312
dog 0.844885 -1.157892
two cat 1.075770 1.643563
dog -1.469388 -0.109050
baz one cat 0.357021 -1.776904
dog -0.968914 -0.674600
foo one cat -0.013960 -0.006154
dog -0.923061 -0.362543
two cat 0.895717 -1.206412
dog 2.565646 0.805244
qux two cat 0.410835 0.132003
dog -0.827317 0.813850
Unstacking when the columns are a MultiIndex is also careful about doing the right thing:
In [25]: df[:3].unstack(0)
exp A B A \
animal cat dog cat dog
first bar baz bar baz bar baz bar
second
one -0.370647 0.357021 -1.157892 -0.6746 -1.344312 -1.776904 0.844885
two 1.075770 NaN -0.109050 NaN 1.643563 NaN -1.469388
exp
animal
first baz
second
one -0.968914
two NaN
In [26]: df2.unstack(1)
exp A B A \
animal cat dog cat dog
second one two one two one two one
first
bar -0.370647 1.075770 -1.157892 -0.109050 -1.344312 1.643563 0.844885
baz 0.357021 NaN -0.674600 NaN -1.776904 NaN -0.968914
foo -0.013960 0.895717 -0.362543 0.805244 -0.006154 -1.206412 -0.923061
qux NaN 0.410835 NaN 0.813850 NaN 0.132003 NaN
exp
animal
second two
first
bar -1.469388
baz NaN
foo 2.565646
qux -0.827317
Reshaping by Melt¶
The melt function found in pandas.core.reshape is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are “pivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the var_name and value_name parameters.
For instance,
In [27]: cheese = DataFrame({'first' : ['John', 'Mary'],
....: 'last' : ['Doe', 'Bo'],
....: 'height' : [5.5, 6.0],
....: 'weight' : [130, 150]})
....:
In [28]: cheese
first height last weight
0 John 5.5 Doe 130
1 Mary 6.0 Bo 150
In [29]: melt(cheese, id_vars=['first', 'last'])
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [30]: melt(cheese, id_vars=['first', 'last'], var_name='quantity')
first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
Combining with stats and GroupBy¶
It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.
In [31]: df
exp A B A
animal cat dog cat dog
first second
bar one -0.370647 -1.157892 -1.344312 0.844885
two 1.075770 -0.109050 1.643563 -1.469388
baz one 0.357021 -0.674600 -1.776904 -0.968914
two -1.294524 0.413738 0.276662 -0.472035
foo one -0.013960 -0.362543 -0.006154 -0.923061
two 0.895717 0.805244 -1.206412 2.565646
qux one 1.431256 1.340309 -1.170299 -0.226169
two 0.410835 0.813850 0.132003 -0.827317
In [32]: df.stack().mean(1).unstack()
animal cat dog
first second
bar one -0.857479 -0.156504
two 1.359666 -0.789219
baz one -0.709942 -0.821757
two -0.508931 -0.029148
foo one -0.010057 -0.642802
two -0.155347 1.685445
qux one 0.130479 0.557070
two 0.271419 -0.006733
# same result, another way
In [33]: df.groupby(level=1, axis=1).mean()
animal cat dog
first second
bar one -0.857479 -0.156504
two 1.359666 -0.789219
baz one -0.709942 -0.821757
two -0.508931 -0.029148
foo one -0.010057 -0.642802
two -0.155347 1.685445
qux one 0.130479 0.557070
two 0.271419 -0.006733
In [34]: df.stack().groupby(level=1).mean()
exp A B
second
one 0.016301 -0.644049
two 0.110588 0.346200
In [35]: df.mean().unstack(0)
exp A B
animal
cat 0.311433 -0.431481
dog -0.184544 0.133632
Pivot tables and cross-tabulations¶
The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies
It takes a number of arguments
- data: A DataFrame object
- values: a column or a list of columns to aggregate
- rows: list of columns to group by on the table rows
- cols: list of columns to group by on the table columns
- aggfunc: function to use for aggregation, defaulting to numpy.mean
Consider a data set like this:
In [36]: df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
....: 'B' : ['A', 'B', 'C'] * 8,
....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
....: 'D' : np.random.randn(24),
....: 'E' : np.random.randn(24)})
....:
In [37]: df
A B C D E
0 one A foo -0.076467 0.959726
1 one B foo -1.187678 -1.110336
2 two C foo 1.130127 -0.619976
3 three A bar -1.436737 0.149748
4 one B bar -1.413681 -0.732339
5 one C bar 1.607920 0.687738
6 two A foo 1.024180 0.176444
7 three B foo 0.569605 0.403310
8 one C foo 0.875906 -0.154951
9 one A bar -2.211372 0.301624
10 two B bar 0.974466 -2.179861
11 three C bar -2.006747 -1.369849
12 one A foo -0.410001 -0.954208
13 one B foo -0.078638 1.462696
14 two C foo 0.545952 -1.743161
15 three A bar -1.219217 -0.826591
16 one B bar -1.226825 -0.345352
17 one C bar 0.769804 1.314232
18 two A foo -1.281247 0.690579
19 three B foo -0.727707 0.995761
20 one C foo -0.121306 2.396780
21 one A bar -0.097883 0.014871
22 two B bar 0.695775 3.357427
23 three C bar 0.341734 -0.317441
We can produce pivot tables from this data very easily:
In [38]: pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
C bar foo
A B
one A -1.154627 -0.243234
B -1.320253 -0.633158
C 1.188862 0.377300
three A -1.327977 NaN
B NaN -0.079051
C -0.832506 NaN
two A NaN -0.128534
B 0.835120 NaN
C NaN 0.838040
In [39]: pivot_table(df, values='D', rows=['B'], cols=['A', 'C'], aggfunc=np.sum)
A one three two
C bar foo bar foo bar foo
B
A -2.309255 -0.486468 -2.655954 NaN NaN -0.257067
B -2.640506 -1.266315 NaN -0.158102 1.670241 NaN
C 2.377724 0.754600 -1.665013 NaN NaN 1.676079
In [40]: pivot_table(df, values=['D','E'], rows=['B'], cols=['A', 'C'], aggfunc=np.sum)
D E \
A one three two one
C bar foo bar foo bar foo bar
B
A -2.309255 -0.486468 -2.655954 NaN NaN -0.257067 0.316495
B -2.640506 -1.266315 NaN -0.158102 1.670241 NaN -1.077692
C 2.377724 0.754600 -1.665013 NaN NaN 1.676079 2.001971
A three two
C foo bar foo bar foo
B
A 0.005518 -0.676843 NaN NaN 0.867024
B 0.352360 NaN 1.39907 1.177566 NaN
C 2.241830 -1.687290 NaN NaN -2.363137
The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:
In [41]: pivot_table(df, rows=['A', 'B'], cols=['C'])
D E
C bar foo bar foo
A B
one A -1.154627 -0.243234 0.158248 0.002759
B -1.320253 -0.633158 -0.538846 0.176180
C 1.188862 0.377300 1.000985 1.120915
three A -1.327977 NaN -0.338421 NaN
B NaN -0.079051 NaN 0.699535
C -0.832506 NaN -0.843645 NaN
two A NaN -0.128534 NaN 0.433512
B 0.835120 NaN 0.588783 NaN
C NaN 0.838040 NaN -1.181568
You can render a nice output of the table omitting the missing values by calling to_string if you wish:
In [42]: table = pivot_table(df, rows=['A', 'B'], cols=['C'])
In [43]: print table.to_string(na_rep='')
D E
C bar foo bar foo
A B
one A -1.154627 -0.243234 0.158248 0.002759
B -1.320253 -0.633158 -0.538846 0.176180
C 1.188862 0.377300 1.000985 1.120915
three A -1.327977 -0.338421
B -0.079051 0.699535
C -0.832506 -0.843645
two A -0.128534 0.433512
B 0.835120 0.588783
C 0.838040 -1.181568
Note that pivot_table is also available as an instance method on DataFrame.
Cross tabulations¶
Use the crosstab function to compute a cross-tabulation of two (or more) factors. By default crosstab computes a frequency table of the factors unless an array of values and an aggregation function are passed.
It takes a number of arguments
- rows: array-like, values to group by in the rows
- cols: array-like, values to group by in the columns
- values: array-like, optional, array of values to aggregate according to the factors
- aggfunc: function, optional, If no values array is passed, computes a frequency table
- rownames: sequence, default None, must match number of row arrays passed
- colnames: sequence, default None, if passed, must match number of column arrays passed
- margins: boolean, default False, Add row/column margins (subtotals)
Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified
For example:
In [44]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
In [45]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
In [46]: b = np.array([one, one, two, one, two, one], dtype=object)
In [47]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
In [48]: crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
b one two
c dull shiny dull shiny
a
bar 1 0 0 1
foo 2 1 1 0
Adding margins (partial aggregates)¶
If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:
In [49]: df.pivot_table(rows=['A', 'B'], cols='C', margins=True, aggfunc=np.std)
D E
C bar foo All bar foo All
A B
one A 1.494463 0.235844 1.019752 0.202765 1.353355 0.795165
B 0.132127 0.784210 0.606779 0.273641 1.819408 1.139647
C 0.592638 0.705136 0.708771 0.442998 1.804346 1.074910
three A 0.153810 NaN 0.153810 0.690376 NaN 0.690376
B NaN 0.917338 0.917338 NaN 0.418926 0.418926
C 1.660627 NaN 1.660627 0.744165 NaN 0.744165
two A NaN 1.630183 1.630183 NaN 0.363548 0.363548
B 0.197065 NaN 0.197065 3.915454 NaN 3.915454
C NaN 0.413074 0.413074 NaN 0.794212 0.794212
All 1.294620 0.824989 1.064129 1.403041 1.188419 1.248988
Tiling¶
The cut function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:
In [50]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
In [51]: cut(ages, bins=3)
Categorical:
[(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60], (43.333, 60]]
Levels (3): Index(['(9.95, 26.667]', '(26.667, 43.333]', '(43.333, 60]'], dtype=object)
If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:
In [52]: cut(ages, bins=[0, 18, 35, 70])
Categorical:
[(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
Levels (3): Index(['(0, 18]', '(18, 35]', '(35, 70]'], dtype=object)