pandas.ewmcov¶
- pandas.ewmcov(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None)¶
- Exponentially-weighted moving covariance - Parameters : - arg1 : Series, DataFrame, or ndarray - arg2 : Series, DataFrame, or ndarray, optional - if not supplied then will default to arg1 and produce pairwise output - com : float. optional - Center of mass:  , ,- span : float, optional - Specify decay in terms of span,  - halflife : float, optional - Specify decay in terms of halflife,  - min_periods : int, default 0 - Number of observations in sample to require (only affects beginning) - freq : None or string alias / date offset object, default=None - Frequency to conform to before computing statistic - adjust : boolean, default True - Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) - how : string, default ‘mean’ - Method for down- or re-sampling - pairwise : bool, default False - If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. - Returns : - y : type of input argument - Notes - Either center of mass or span must be specified - EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter  is related to the span as is related to the span as - where c is the center of mass. Given a span, the associated center of mass is  - So a “20-day EWMA” would have center 9.5.