pandas.Series¶
- class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)¶
- One-dimensional ndarray with axis labels (including time series). - Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN) - Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. - Parameters : - data : array-like, dict, or scalar value - Contains data stored in Series - index : array-like or Index (1d) - Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. - dtype : numpy.dtype or None - If None, dtype will be inferred - copy : boolean, default False - Copy input data - Attributes - T - support for compatiblity - at - axes - base - blocks - Internal property, property synonym for as_blocks() - data - dtype - dtypes - for compat - empty - True if NDFrame is entirely empty [no items] - flags - ftype - ftypes - for compat - iat - iloc - imag - is_time_series - ix - loc - ndim - real - shape - size - strides - values - Return Series as ndarray - is_copy - str - Methods - abs() - Return an object with absolute value taken. - add(other[, level, fill_value, axis]) - Binary operator add with support to substitute a fill_value for missing data - add_prefix(prefix) - Concatenate prefix string with panel items names. - add_suffix(suffix) - Concatenate suffix string with panel items names - align(other[, join, axis, level, copy, ...]) - Align two object on their axes with the - all([axis, out]) - Returns True if all elements evaluate to True. - any([axis, out]) - Returns True if any of the elements of a evaluate to True. - append(to_append[, verify_integrity]) - Concatenate two or more Series. The indexes must not overlap - apply(func[, convert_dtype, args]) - Invoke function on values of Series. Can be ufunc (a NumPy function - argmax([axis, out, skipna]) - Index of first occurrence of maximum of values. - argmin([axis, out, skipna]) - Index of first occurrence of minimum of values. - argsort([axis, kind, order]) - Overrides ndarray.argsort. - as_blocks() - Convert the frame to a dict of dtype -> Constructor Types that each has - as_matrix([columns]) - Convert the frame to its Numpy-array matrix representation. Columns - asfreq(freq[, method, how, normalize]) - Convert all TimeSeries inside to specified frequency using DateOffset - asof(where) - Return last good (non-NaN) value in TimeSeries if value is NaN for - astype(dtype[, copy, raise_on_error]) - Cast object to input numpy.dtype - at_time(time[, asof]) - Select values at particular time of day (e.g. - autocorr() - Lag-1 autocorrelation - between(left, right[, inclusive]) - Return boolean Series equivalent to left <= series <= right. NA values - between_time(start_time, end_time[, ...]) - Select values between particular times of the day (e.g., 9:00-9:30 AM) - bfill([axis, inplace, limit, downcast]) - Synonym for NDFrame.fillna(method=’bfill’) - bool() - Return the bool of a single element PandasObject - clip([lower, upper, out]) - Trim values at input threshold(s) - clip_lower(threshold) - Return copy of the input with values below given value truncated - clip_upper(threshold) - Return copy of input with values above given value truncated - combine(other, func[, fill_value]) - Perform elementwise binary operation on two Series using given function - combine_first(other) - Combine Series values, choosing the calling Series’s values - compound([axis, skipna, level]) - Return the compound percentage of the values for the requested axis - compress(condition[, axis, out]) - consolidate([inplace]) - Compute NDFrame with “consolidated” internals (data of each dtype - convert_objects([convert_dates, ...]) - Attempt to infer better dtype for object columns - copy([deep]) - Make a copy of this object - corr(other[, method, min_periods]) - Compute correlation with other Series, excluding missing values - count([level]) - Return number of non-NA/null observations in the Series - cov(other[, min_periods]) - Compute covariance with Series, excluding missing values - cummax([axis, dtype, out, skipna]) - Return cumulative max over requested axis. - cummin([axis, dtype, out, skipna]) - Return cumulative min over requested axis. - cumprod([axis, dtype, out, skipna]) - Return cumulative prod over requested axis. - cumsum([axis, dtype, out, skipna]) - Return cumulative sum over requested axis. - describe([percentile_width, percentiles]) - Generate various summary statistics, excluding NaN values. - diff([periods]) - 1st discrete difference of object - div(other[, level, fill_value, axis]) - Binary operator truediv with support to substitute a fill_value for missing data - divide(other[, level, fill_value, axis]) - Binary operator truediv with support to substitute a fill_value for missing data - dot(other) - Matrix multiplication with DataFrame or inner-product with Series - drop(labels[, axis, level, inplace]) - Return new object with labels in requested axis removed - drop_duplicates([take_last, inplace]) - Return Series with duplicate values removed - dropna([axis, inplace]) - Return Series without null values - duplicated([take_last]) - Return boolean Series denoting duplicate values - eq(other) - equals(other) - Determines if two NDFrame objects contain the same elements. NaNs in the - factorize([sort, na_sentinel]) - Encode the object as an enumerated type or categorical variable - ffill([axis, inplace, limit, downcast]) - Synonym for NDFrame.fillna(method=’ffill’) - fillna([value, method, axis, inplace, ...]) - Fill NA/NaN values using the specified method - filter([items, like, regex, axis]) - Restrict the info axis to set of items or wildcard - first(offset) - Convenience method for subsetting initial periods of time series data - first_valid_index() - Return label for first non-NA/null value - floordiv(other[, level, fill_value, axis]) - Binary operator floordiv with support to substitute a fill_value for missing data - from_array(arr[, index, name, copy, fastpath]) - from_csv(path[, sep, parse_dates, header, ...]) - Read delimited file into Series - ge(other) - get(key[, default]) - Get item from object for given key (DataFrame column, Panel slice, - get_dtype_counts() - Return the counts of dtypes in this object - get_ftype_counts() - Return the counts of ftypes in this object - get_value(label[, takeable]) - Quickly retrieve single value at passed index label - get_values() - same as values (but handles sparseness conversions); is a view - groupby([by, axis, level, as_index, sort, ...]) - Group series using mapper (dict or key function, apply given function - gt(other) - head([n]) - Returns first n rows - hist([by, ax, grid, xlabelsize, xrot, ...]) - Draw histogram of the input series using matplotlib - idxmax([axis, out, skipna]) - Index of first occurrence of maximum of values. - idxmin([axis, out, skipna]) - Index of first occurrence of minimum of values. - iget(i[, axis]) - Return the i-th value or values in the Series by location - iget_value(i[, axis]) - Return the i-th value or values in the Series by location - interpolate([method, axis, limit, inplace, ...]) - Interpolate values according to different methods. - irow(i[, axis]) - Return the i-th value or values in the Series by location - isin(values) - Return a boolean Series showing whether each element - isnull() - Return a boolean same-sized object indicating if the values are null .. - item() - iteritems() - Lazily iterate over (index, value) tuples - iterkv(*args, **kwargs) - iteritems alias used to get around 2to3. Deprecated - keys() - Alias for index - kurt([axis, skipna, level, numeric_only]) - Return unbiased kurtosis over requested axis - kurtosis([axis, skipna, level, numeric_only]) - Return unbiased kurtosis over requested axis - last(offset) - Convenience method for subsetting final periods of time series data - last_valid_index() - Return label for last non-NA/null value - le(other) - load(path) - Deprecated. - lt(other) - mad([axis, skipna, level]) - Return the mean absolute deviation of the values for the requested axis - map(arg[, na_action]) - Map values of Series using input correspondence (which can be - mask(cond) - Returns copy whose values are replaced with nan if the - max([axis, skipna, level, numeric_only]) - This method returns the maximum of the values in the object. - mean([axis, skipna, level, numeric_only]) - Return the mean of the values for the requested axis - median([axis, skipna, level, numeric_only]) - Return the median of the values for the requested axis - min([axis, skipna, level, numeric_only]) - This method returns the minimum of the values in the object. - mod(other[, level, fill_value, axis]) - Binary operator mod with support to substitute a fill_value for missing data - mode() - Returns the mode(s) of the dataset. - mul(other[, level, fill_value, axis]) - Binary operator mul with support to substitute a fill_value for missing data - multiply(other[, level, fill_value, axis]) - Binary operator mul with support to substitute a fill_value for missing data - ne(other) - nlargest([n, take_last]) - Return the largest n elements. - nonzero() - numpy like, returns same as nonzero - notnull() - Return a boolean same-sized object indicating if the values are not null .. - nsmallest([n, take_last]) - Return the smallest n elements. - nunique() - Return count of unique elements in the object. - order([na_last, ascending, kind, ...]) - Sorts Series object, by value, maintaining index-value link. - pct_change([periods, fill_method, limit, freq]) - Percent change over given number of periods. - plot(series[, label, kind, use_index, rot, ...]) - Plot the input series with the index on the x-axis using matplotlib - pop(item) - Return item and drop from frame. - pow(other[, level, fill_value, axis]) - Binary operator pow with support to substitute a fill_value for missing data - prod([axis, skipna, level, numeric_only]) - Return the product of the values for the requested axis - product([axis, skipna, level, numeric_only]) - Return the product of the values for the requested axis - ptp([axis, out]) - put(*args, **kwargs) - quantile([q]) - Return value at the given quantile, a la numpy.percentile. - radd(other[, level, fill_value, axis]) - Binary operator radd with support to substitute a fill_value for missing data - rank([method, na_option, ascending, pct]) - Compute data ranks (1 through n). - ravel([order]) - rdiv(other[, level, fill_value, axis]) - Binary operator rtruediv with support to substitute a fill_value for missing data - reindex([index]) - Conform Series to new index with optional filling logic, placing - reindex_axis(labels[, axis]) - for compatibility with higher dims - reindex_like(other[, method, copy, limit]) - return an object with matching indicies to myself - rename([index]) - Alter axes input function or functions. - rename_axis(mapper[, axis, copy, inplace]) - Alter index and / or columns using input function or functions. - reorder_levels(order) - Rearrange index levels using input order. - repeat(reps) - See ndarray.repeat - replace([to_replace, value, inplace, limit, ...]) - Replace values given in ‘to_replace’ with ‘value’. - resample(rule[, how, axis, fill_method, ...]) - Convenience method for frequency conversion and resampling of regular time-series data. - reset_index([level, drop, name, inplace]) - Analogous to the pandas.DataFrame.reset_index() function, see - reshape(*args, **kwargs) - See numpy.ndarray.reshape - rfloordiv(other[, level, fill_value, axis]) - Binary operator rfloordiv with support to substitute a fill_value for missing data - rmod(other[, level, fill_value, axis]) - Binary operator rmod with support to substitute a fill_value for missing data - rmul(other[, level, fill_value, axis]) - Binary operator rmul with support to substitute a fill_value for missing data - round([decimals, out]) - Return a with each element rounded to the given number of decimals. - rpow(other[, level, fill_value, axis]) - Binary operator rpow with support to substitute a fill_value for missing data - rsub(other[, level, fill_value, axis]) - Binary operator rsub with support to substitute a fill_value for missing data - rtruediv(other[, level, fill_value, axis]) - Binary operator rtruediv with support to substitute a fill_value for missing data - save(path) - Deprecated. - select(crit[, axis]) - Return data corresponding to axis labels matching criteria - set_axis(axis, labels) - public verson of axis assignment - set_value(label, value[, takeable]) - Quickly set single value at passed label. - shift([periods, freq, axis]) - Shift index by desired number of periods with an optional time freq - skew([axis, skipna, level, numeric_only]) - Return unbiased skew over requested axis - slice_shift([periods, axis]) - Equivalent to shift without copying data. - sort([axis, ascending, kind, na_position, ...]) - Sort values and index labels by value. - sort_index([ascending]) - Sort object by labels (along an axis) - sortlevel([level, ascending, sort_remaining]) - Sort Series with MultiIndex by chosen level. Data will be - squeeze() - squeeze length 1 dimensions - std([axis, skipna, level, ddof]) - Return unbiased standard deviation over requested axis - sub(other[, level, fill_value, axis]) - Binary operator sub with support to substitute a fill_value for missing data - subtract(other[, level, fill_value, axis]) - Binary operator sub with support to substitute a fill_value for missing data - sum([axis, skipna, level, numeric_only]) - Return the sum of the values for the requested axis - swapaxes(axis1, axis2[, copy]) - Interchange axes and swap values axes appropriately - swaplevel(i, j[, copy]) - Swap levels i and j in a MultiIndex - tail([n]) - Returns last n rows - take(indices[, axis, convert, is_copy]) - Analogous to ndarray.take, return Series corresponding to requested - to_clipboard([excel, sep]) - Attempt to write text representation of object to the system clipboard - to_csv(path[, index, sep, na_rep, ...]) - Write Series to a comma-separated values (csv) file - to_dense() - Return dense representation of NDFrame (as opposed to sparse) - to_dict() - Convert Series to {label -> value} dict - to_frame([name]) - Convert Series to DataFrame - to_hdf(path_or_buf, key, **kwargs) - activate the HDFStore - to_json([path_or_buf, orient, date_format, ...]) - Convert the object to a JSON string. - to_msgpack([path_or_buf]) - msgpack (serialize) object to input file path - to_period([freq, copy]) - Convert TimeSeries from DatetimeIndex to PeriodIndex with desired - to_pickle(path) - Pickle (serialize) object to input file path - to_sparse([kind, fill_value]) - Convert Series to SparseSeries - to_sql(name, con[, flavor, if_exists, ...]) - Write records stored in a DataFrame to a SQL database. - to_string([buf, na_rep, float_format, ...]) - Render a string representation of the Series - to_timestamp([freq, how, copy]) - Cast to datetimeindex of timestamps, at beginning of period - tolist() - Convert Series to a nested list - transpose() - support for compatiblity - truediv(other[, level, fill_value, axis]) - Binary operator truediv with support to substitute a fill_value for missing data - truncate([before, after, axis, copy]) - Truncates a sorted NDFrame before and/or after some particular - tshift([periods, freq, axis]) - Shift the time index, using the index’s frequency if available - tz_convert(tz[, axis, copy]) - Convert the axis to target time zone. - tz_localize(tz[, axis, copy, infer_dst]) - Localize tz-naive TimeSeries to target time zone - unique() - Return array of unique values in the object. - unstack([level]) - Unstack, a.k.a. - update(other) - Modify Series in place using non-NA values from passed - valid([inplace]) - value_counts([normalize, sort, ascending, bins]) - Returns object containing counts of unique values. - var([axis, skipna, level, ddof]) - Return unbiased variance over requested axis - view([dtype]) - where(cond[, other, inplace, axis, level, ...]) - Return an object of same shape as self and whose corresponding - xs(key[, axis, level, copy, drop_level]) - Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.