pandas.DataFrame.fillna¶
- DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)¶
Fill NA/NaN values using the specified method
Parameters: method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
axis : {0, 1}, default 0
- 0: fill column-by-column
- 1: fill row-by-row
inplace : boolean, default False
If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).
limit : int, default None
Maximum size gap to forward or backward fill
downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
Returns: filled : same type as caller