pandas.stats.moments.rolling_var

pandas.stats.moments.rolling_var(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
Numerically stable implementation using Welford’s method.

Moving variance.

Parameters:

arg : Series, DataFrame

window : int

Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

Returns:

y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).