pandas.TimedeltaIndex

class pandas.TimedeltaIndex[source]

Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects

Parameters:

data : array-like (1-dimensional), optional

Optional timedelta-like data to construct index with

unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional

which is an integer/float number

freq: a frequency for the index, optional

copy : bool

Make a copy of input ndarray

start : starting value, timedelta-like, optional

If data is None, start is used as the start point in generating regular timedelta data.

periods : int, optional, > 0

Number of periods to generate, if generating index. Takes precedence over end argument

end : end time, timedelta-like, optional

If periods is none, generated index will extend to first conforming time on or just past end argument

closed : string or None, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

name : object

Name to be stored in the index

Notes

To learn more about the frequency strings, please see this link.

Attributes

T return the transpose, which is by definition self
asi8
asobject return object Index which contains boxed values
base return the base object if the memory of the underlying data is
components Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.
data return the data pointer of the underlying data
days Number of days for each element.
dtype
dtype_str
empty
flags
freq
freqstr Return the frequency object as a string if its set, otherwise None
has_duplicates
hasnans
inferred_freq
inferred_type
is_all_dates
is_monotonic alias for is_monotonic_increasing (deprecated)
is_monotonic_decreasing return if the index is monotonic decreasing (only equal or
is_monotonic_increasing return if the index is monotonic increasing (only equal or
is_unique
itemsize return the size of the dtype of the item of the underlying data
microseconds Number of microseconds (>= 0 and less than 1 second) for each element.
name
names
nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.
nbytes return the number of bytes in the underlying data
ndim return the number of dimensions of the underlying data,
nlevels
resolution
seconds Number of seconds (>= 0 and less than 1 day) for each element.
shape return a tuple of the shape of the underlying data
size return the number of elements in the underlying data
strides return the strides of the underlying data
values return the underlying data as an ndarray

Methods

all([other])
any([other])
append(other) Append a collection of Index options together
argmax([axis]) Returns the indices of the maximum values along an axis.
argmin([axis]) Returns the indices of the minimum values along an axis.
argsort(*args, **kwargs) Returns the indices that would sort the index and its underlying data.
asof(label) For a sorted index, return the most recent label up to and including the passed label.
asof_locs(where, mask) where : array of timestamps
astype(dtype[, copy]) Create an Index with values cast to dtypes.
ceil(freq) ceil the index to the specified freq
contains(key) return a boolean if this key is IN the index
copy([name, deep, dtype]) Make a copy of this object.
delete(loc) Make a new DatetimeIndex with passed location(s) deleted.
difference(other) Return a new Index with elements from the index that are not in other.
drop(labels[, errors]) Make new Index with passed list of labels deleted
drop_duplicates([keep]) Return Index with duplicate values removed
dropna([how]) Return Index without NA/NaN values
duplicated([keep]) Return boolean np.ndarray denoting duplicate values
equals(other) Determines if two Index objects contain the same elements.
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical variable
fillna([value, downcast]) Fill NA/NaN values with the specified value
floor(freq) floor the index to the specified freq
format([name, formatter]) Render a string representation of the Index
get_duplicates()
get_indexer(target[, method, limit, tolerance]) Compute indexer and mask for new index given the current index.
get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique
get_indexer_non_unique(target) Compute indexer and mask for new index given the current index.
get_level_values(level) Return an Index of values for requested level, equal to the length
get_loc(key[, method, tolerance]) Get integer location for requested label
get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label.
get_value(series, key) Fast lookup of value from 1-dimensional ndarray.
get_value_maybe_box(series, key)
get_values() return the underlying data as an ndarray
groupby(values) Group the index labels by a given array of values.
holds_integer()
identical(other) Similar to equals, but check that other comparable attributes are
insert(loc, item) Make new Index inserting new item at location
intersection(other) Specialized intersection for TimedeltaIndex objects.
is_(other) More flexible, faster check like is but that works through views
is_boolean()
is_categorical()
is_floating()
is_integer()
is_interval()
is_lexsorted_for_tuple(tup)
is_mixed()
is_numeric()
is_object()
is_type_compatible(typ)
isin(values) Compute boolean array of whether each index value is found in the
isnull() Detect missing values
item() return the first element of the underlying data as a python
join(other[, how, level, return_indexers]) See Index.join
map(f)
max([axis]) Return the maximum value of the Index or maximum along an axis.
memory_usage([deep]) Memory usage of my values
min([axis]) Return the minimum value of the Index or minimum along an axis.
notnull() Reverse of isnull
nunique([dropna]) Return number of unique elements in the object.
putmask(mask, value) return a new Index of the values set with the mask
ravel([order]) return an ndarray of the flattened values of the underlying data
reindex(target[, method, level, limit, …]) Create index with target’s values (move/add/delete values as necessary)
rename(name[, inplace]) Set new names on index.
repeat(repeats, *args, **kwargs) Analogous to ndarray.repeat
reshape(*args, **kwargs) NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.
round(freq, *args, **kwargs) round the index to the specified freq
searchsorted(value[, side, sorter]) Find indices where elements should be inserted to maintain order.
set_names(names[, level, inplace]) Set new names on index.
set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray.
shift(n[, freq]) Specialized shift which produces a DatetimeIndex
slice_indexer([start, end, step, kind]) For an ordered Index, compute the slice indexer for input labels and
slice_locs([start, end, step, kind]) Compute slice locations for input labels.
sort(*args, **kwargs)
sort_values([return_indexer, ascending]) Return sorted copy of Index
sortlevel([level, ascending, sort_remaining]) For internal compatibility with with the Index API
str alias of StringMethods
summary([name]) return a summarized representation
sym_diff(*args, **kwargs)
symmetric_difference(other[, result_name]) Compute the symmetric difference of two Index objects.
take(indices[, axis, allow_fill, fill_value]) return a new Index of the values selected by the indices
to_datetime([dayfirst]) DEPRECATED: use pandas.to_datetime() instead.
to_native_types([slicer]) Format specified values of self and return them.
to_pytimedelta() Return TimedeltaIndex as object ndarray of datetime.timedelta objects
to_series(**kwargs) Create a Series with both index and values equal to the index keys
tolist() return a list of the underlying data
total_seconds() Total duration of each element expressed in seconds.
transpose(*args, **kwargs) return the transpose, which is by definition self
union(other) Specialized union for TimedeltaIndex objects.
unique() Return unique values in the object.
value_counts([normalize, sort, ascending, …]) Returns object containing counts of unique values.
view([cls])
where(cond[, other])

New in version 0.19.0.

Scroll To Top