Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.DataFrame.apply

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)[source]

Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

Parameters:

func : function

Function to apply to each column/row

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

  • 0 or ‘index’: apply function to each column
  • 1 or ‘columns’: apply function to each row

broadcast : boolean, default False

For aggregation functions, return object of same size with values propagated

raw : boolean, default False

If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance

reduce : boolean or None, default None

Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.

args : tuple

Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

Returns:

applied : Series or DataFrame

See also

DataFrame.applymap
For elementwise operations
DataFrame.aggregate
only perform aggregating type operations
DataFrame.transform
only perform transformating type operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples

>>> df.apply(numpy.sqrt) # returns DataFrame
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
Scroll To Top