pandas.Series.truncate¶
-
Series.
truncate
(before=None, after=None, axis=None, copy=True)[source]¶ Truncates a sorted DataFrame/Series before and/or after some particular index value. If the axis contains only datetime values, before/after parameters are converted to datetime values.
Parameters: before : date, string, int
Truncate all rows before this index value
after : date, string, int
Truncate all rows after this index value
axis : {0 or ‘index’, 1 or ‘columns’}
- 0 or ‘index’: apply truncation to rows
- 1 or ‘columns’: apply truncation to columns
Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels)
copy : boolean, default is True,
return a copy of the truncated section
Returns: truncated : type of caller
Examples
>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n >>> df = pd.DataFrame({'A': [1, 2, 3, 4, 5], ... 'B': [6, 7, 8, 9, 10], ... 'C': [11, 12, 13, 14, 15]}, ... index=['a', 'b', 'c', 'd', 'e']) >>> df.truncate(before='b', after='d') A B C b 2 7 12 c 3 8 13 d 4 9 14
The index values in
truncate
can be datetimes or string dates. Note thattruncate
assumes a 0 value for any unspecified date component in aDatetimeIndex
in contrast to slicing which returns any partially matching dates.>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1