pandas.DataFrame.pivot¶
- 
DataFrame.pivot(index=None, columns=None, values=None)[source]¶
- Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame. - Parameters: - index : string or object, optional - Column name to use to make new frame’s index. If None, uses existing index. - columns : string or object - Column name to use to make new frame’s columns - values : string or object, optional - Column name to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns - Returns: - pivoted : DataFrame - See also - DataFrame.pivot_table
- generalization of pivot that can handle duplicate values for one index/column pair
- DataFrame.unstack
- pivot based on the index values instead of a column
 - Notes - For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods - Examples - >>> df = pd.DataFrame({'foo': ['one','one','one','two','two','two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6]}) >>> df foo bar baz 0 one A 1 1 one B 2 2 one C 3 3 two A 4 4 two B 5 5 two C 6 - >>> df.pivot(index='foo', columns='bar', values='baz') A B C one 1 2 3 two 4 5 6 - >>> df.pivot(index='foo', columns='bar')['baz'] A B C one 1 2 3 two 4 5 6