pandas.DatetimeIndex.searchsorted¶
- 
DatetimeIndex.searchsorted(value, side='left', sorter=None)[source]¶
- Find indices where elements should be inserted to maintain order. - Find the indices into a sorted DatetimeIndex self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved. - Parameters: - value : array_like - Values to insert into self. - side : {‘left’, ‘right’}, optional - If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self). - sorter : 1-D array_like, optional - Optional array of integer indices that sort self into ascending order. They are typically the result of - np.argsort.- Returns: - indices : array of ints - Array of insertion points with the same shape as value. - See also - Notes - Binary search is used to find the required insertion points. - Examples - >>> x = pd.Series([1, 2, 3]) >>> x 0 1 1 2 2 3 dtype: int64 - >>> x.searchsorted(4) array([3]) - >>> x.searchsorted([0, 4]) array([0, 3]) - >>> x.searchsorted([1, 3], side='left') array([0, 2]) - >>> x.searchsorted([1, 3], side='right') array([1, 3]) - >>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk' ]) [apple, bread, bread, cheese, milk] Categories (4, object): [apple < bread < cheese < milk] - >>> x.searchsorted('bread') array([1]) # Note: an array, not a scalar - >>> x.searchsorted(['bread']) array([1]) - >>> x.searchsorted(['bread', 'eggs']) array([1, 4]) - >>> x.searchsorted(['bread', 'eggs'], side='right') array([3, 4]) # eggs before milk