Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.DataFrame

class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)[source]

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.

Parameters:

data : numpy ndarray (structured or homogeneous), dict, or DataFrame

Dict can contain Series, arrays, constants, or list-like objects

Changed in version 0.23.0: If data is a dict, argument order is maintained for Python 3.6 and later.

index : Index or array-like

Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided

columns : Index or array-like

Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, …, n) if no column labels are provided

dtype : dtype, default None

Data type to force. Only a single dtype is allowed. If None, infer

copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See also

DataFrame.from_records
constructor from tuples, also record arrays
DataFrame.from_dict
from dicts of Series, arrays, or dicts
DataFrame.from_items
from sequence of (key, value) pairs

pandas.read_csv, pandas.read_table, pandas.read_clipboard

Examples

Constructing DataFrame from a dictionary.

>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df
   col1  col2
0     1     3
1     2     4

Notice that the inferred dtype is int64.

>>> df.dtypes
col1    int64
col2    int64
dtype: object

To enforce a single dtype:

>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
col1    int8
col2    int8
dtype: object

Constructing DataFrame from numpy ndarray:

>>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),
...                    columns=['a', 'b', 'c', 'd', 'e'])
>>> df2
    a   b   c   d   e
0   2   8   8   3   4
1   4   2   9   0   9
2   1   0   7   8   0
3   5   1   7   1   3
4   6   0   2   4   2

Attributes

T Transpose index and columns.
at Access a single value for a row/column label pair.
axes Return a list representing the axes of the DataFrame.
blocks (DEPRECATED) Internal property, property synonym for as_blocks()
columns The column labels of the DataFrame.
dtypes Return the dtypes in the DataFrame.
empty Indicator whether DataFrame is empty.
ftypes Return the ftypes (indication of sparse/dense and dtype) in DataFrame.
iat Access a single value for a row/column pair by integer position.
iloc Purely integer-location based indexing for selection by position.
index The index (row labels) of the DataFrame.
ix A primarily label-location based indexer, with integer position fallback.
loc Access a group of rows and columns by label(s) or a boolean array.
ndim Return an int representing the number of axes / array dimensions.
shape Return a tuple representing the dimensionality of the DataFrame.
size Return an int representing the number of elements in this object.
style Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame.
values Return a Numpy representation of the DataFrame.
is_copy  

Methods

abs() Return a Series/DataFrame with absolute numeric value of each element.
add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator add).
add_prefix(prefix) Prefix labels with string prefix.
add_suffix(suffix) Suffix labels with string suffix.
agg(func[, axis]) Aggregate using one or more operations over the specified axis.
aggregate(func[, axis]) Aggregate using one or more operations over the specified axis.
align(other[, join, axis, level, copy, …]) Align two objects on their axes with the specified join method for each axis Index
all([axis, bool_only, skipna, level]) Return whether all elements are True over series or dataframe axis.
any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis.
append(other[, ignore_index, …]) Append rows of other to the end of this frame, returning a new object.
apply(func[, axis, broadcast, raw, reduce, …]) Apply a function along an axis of the DataFrame.
applymap(func) Apply a function to a Dataframe elementwise.
as_blocks([copy]) (DEPRECATED) Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
as_matrix([columns]) (DEPRECATED) Convert the frame to its Numpy-array representation.
asfreq(freq[, method, how, normalize, …]) Convert TimeSeries to specified frequency.
asof(where[, subset]) The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)
assign(**kwargs) Assign new columns to a DataFrame, returning a new object (a copy) with the new columns added to the original ones.
astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
at_time(time[, asof]) Select values at particular time of day (e.g.
between_time(start_time, end_time[, …]) Select values between particular times of the day (e.g., 9:00-9:30 AM).
bfill([axis, inplace, limit, downcast]) Synonym for DataFrame.fillna(method='bfill')
bool() Return the bool of a single element PandasObject.
boxplot([column, by, ax, fontsize, rot, …]) Make a box plot from DataFrame columns.
clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a threshold truncated.
clip_upper(threshold[, axis, inplace]) Return copy of input with values above given value(s) truncated.
combine(other, func[, fill_value, overwrite]) Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)
combine_first(other) Combine two DataFrame objects and default to non-null values in frame calling the method.
compound([axis, skipna, level]) Return the compound percentage of the values for the requested axis
consolidate([inplace]) (DEPRECATED) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).
convert_objects([convert_dates, …]) (DEPRECATED) Attempt to infer better dtype for object columns.
copy([deep]) Make a copy of this object’s indices and data.
corr([method, min_periods]) Compute pairwise correlation of columns, excluding NA/null values
corrwith(other[, axis, drop]) Compute pairwise correlation between rows or columns of two DataFrame objects.
count([axis, level, numeric_only]) Count non-NA cells for each column or row.
cov([min_periods]) Compute pairwise covariance of columns, excluding NA/null values.
cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis.
cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis.
cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis.
cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis.
describe([percentiles, include, exclude]) Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.
diff([periods, axis]) First discrete difference of element.
div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).
divide(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).
dot(other) Matrix multiplication with DataFrame or Series objects.
drop([labels, axis, index, columns, level, …]) Drop specified labels from rows or columns.
drop_duplicates([subset, keep, inplace]) Return DataFrame with duplicate rows removed, optionally only considering certain columns
dropna([axis, how, thresh, subset, inplace]) Remove missing values.
duplicated([subset, keep]) Return boolean Series denoting duplicate rows, optionally only considering certain columns
eq(other[, axis, level]) Wrapper for flexible comparison methods eq
equals(other) Determines if two NDFrame objects contain the same elements.
eval(expr[, inplace]) Evaluate a string describing operations on DataFrame columns.
ewm([com, span, halflife, alpha, …]) Provides exponential weighted functions
expanding([min_periods, center, axis]) Provides expanding transformations.
ffill([axis, inplace, limit, downcast]) Synonym for DataFrame.fillna(method='ffill')
fillna([value, method, axis, inplace, …]) Fill NA/NaN values using the specified method
filter([items, like, regex, axis]) Subset rows or columns of dataframe according to labels in the specified index.
first(offset) Convenience method for subsetting initial periods of time series data based on a date offset.
first_valid_index() Return index for first non-NA/null value.
floordiv(other[, axis, level, fill_value]) Integer division of dataframe and other, element-wise (binary operator floordiv).
from_csv(path[, header, sep, index_col, …]) (DEPRECATED) Read CSV file.
from_dict(data[, orient, dtype, columns]) Construct DataFrame from dict of array-like or dicts.
from_items(items[, columns, orient]) (DEPRECATED) Construct a dataframe from a list of tuples
from_records(data[, index, exclude, …]) Convert structured or record ndarray to DataFrame
ge(other[, axis, level]) Wrapper for flexible comparison methods ge
get(key[, default]) Get item from object for given key (DataFrame column, Panel slice, etc.).
get_dtype_counts() Return counts of unique dtypes in this object.
get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in this object.
get_value(index, col[, takeable]) (DEPRECATED) Quickly retrieve single value at passed column and index
get_values() Return an ndarray after converting sparse values to dense.
groupby([by, axis, level, as_index, sort, …]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
gt(other[, axis, level]) Wrapper for flexible comparison methods gt
head([n]) Return the first n rows.
hist([column, by, grid, xlabelsize, xrot, …]) Make a histogram of the DataFrame’s.
idxmax([axis, skipna]) Return index of first occurrence of maximum over requested axis.
idxmin([axis, skipna]) Return index of first occurrence of minimum over requested axis.
infer_objects() Attempt to infer better dtypes for object columns.
info([verbose, buf, max_cols, memory_usage, …]) Print a concise summary of a DataFrame.
insert(loc, column, value[, allow_duplicates]) Insert column into DataFrame at specified location.
interpolate([method, axis, limit, inplace, …]) Interpolate values according to different methods.
isin(values) Return boolean DataFrame showing whether each element in the DataFrame is contained in values.
isna() Detect missing values.
isnull() Detect missing values.
items() Iterator over (column name, Series) pairs.
iteritems() Iterator over (column name, Series) pairs.
iterrows() Iterate over DataFrame rows as (index, Series) pairs.
itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.
join(other[, on, how, lsuffix, rsuffix, sort]) Join columns with other DataFrame either on index or on a key column.
keys() Get the ‘info axis’ (see Indexing for more)
kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
kurtosis([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
last(offset) Convenience method for subsetting final periods of time series data based on a date offset.
last_valid_index() Return index for last non-NA/null value.
le(other[, axis, level]) Wrapper for flexible comparison methods le
lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame.
lt(other[, axis, level]) Wrapper for flexible comparison methods lt
mad([axis, skipna, level]) Return the mean absolute deviation of the values for the requested axis
mask(cond[, other, inplace, axis, level, …]) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in the object.
mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
median([axis, skipna, level, numeric_only]) Return the median of the values for the requested axis
melt([id_vars, value_vars, var_name, …]) “Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.
memory_usage([index, deep]) Return the memory usage of each column in bytes.
merge(right[, how, on, left_on, right_on, …]) Merge DataFrame objects by performing a database-style join operation by columns or indexes.
min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in the object.
mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary operator mod).
mode([axis, numeric_only]) Gets the mode(s) of each element along the axis selected.
mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator mul).
multiply(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator mul).
ne(other[, axis, level]) Wrapper for flexible comparison methods ne
nlargest(n, columns[, keep]) Return the first n rows ordered by columns in descending order.
notna() Detect existing (non-missing) values.
notnull() Detect existing (non-missing) values.
nsmallest(n, columns[, keep]) Get the rows of a DataFrame sorted by the n smallest values of columns.
nunique([axis, dropna]) Return Series with number of distinct observations over requested axis.
pct_change([periods, fill_method, limit, freq]) Percentage change between the current and a prior element.
pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)
pivot([index, columns, values]) Return reshaped DataFrame organized by given index / column values.
pivot_table([values, index, columns, …]) Create a spreadsheet-style pivot table as a DataFrame.
plot alias of pandas.plotting._core.FramePlotMethods
pop(item) Return item and drop from frame.
pow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-wise (binary operator pow).
prod([axis, skipna, level, numeric_only, …]) Return the product of the values for the requested axis
product([axis, skipna, level, numeric_only, …]) Return the product of the values for the requested axis
quantile([q, axis, numeric_only, interpolation]) Return values at the given quantile over requested axis, a la numpy.percentile.
query(expr[, inplace]) Query the columns of a frame with a boolean expression.
radd(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator radd).
rank([axis, method, numeric_only, …]) Compute numerical data ranks (1 through n) along axis.
rdiv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator rtruediv).
reindex([labels, index, columns, axis, …]) Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
reindex_axis(labels[, axis, method, level, …]) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
reindex_like(other[, method, copy, limit, …]) Return an object with matching indices to myself.
rename([mapper, index, columns, axis, copy, …]) Alter axes labels.
rename_axis(mapper[, axis, copy, inplace]) Alter the name of the index or columns.
reorder_levels(order[, axis]) Rearrange index levels using input order.
replace([to_replace, value, inplace, limit, …]) Replace values given in to_replace with value.
resample(rule[, how, axis, fill_method, …]) Convenience method for frequency conversion and resampling of time series.
reset_index([level, drop, inplace, …]) For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.
rfloordiv(other[, axis, level, fill_value]) Integer division of dataframe and other, element-wise (binary operator rfloordiv).
rmod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary operator rmod).
rmul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator rmul).
rolling(window[, min_periods, center, …]) Provides rolling window calculations.
round([decimals]) Round a DataFrame to a variable number of decimal places.
rpow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-wise (binary operator rpow).
rsub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator rsub).
rtruediv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator rtruediv).
sample([n, frac, replace, weights, …]) Return a random sample of items from an axis of object.
select(crit[, axis]) (DEPRECATED) Return data corresponding to axis labels matching criteria
select_dtypes([include, exclude]) Return a subset of the DataFrame’s columns based on the column dtypes.
sem([axis, skipna, level, ddof, numeric_only]) Return unbiased standard error of the mean over requested axis.
set_axis(labels[, axis, inplace]) Assign desired index to given axis.
set_index(keys[, drop, append, inplace, …]) Set the DataFrame index (row labels) using one or more existing columns.
set_value(index, col, value[, takeable]) (DEPRECATED) Put single value at passed column and index
shift([periods, freq, axis]) Shift index by desired number of periods with an optional time freq
skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normalized by N-1
slice_shift([periods, axis]) Equivalent to shift without copying data.
sort_index([axis, level, ascending, …]) Sort object by labels (along an axis)
sort_values(by[, axis, ascending, inplace, …]) Sort by the values along either axis
sortlevel([level, axis, ascending, inplace, …]) (DEPRECATED) Sort multilevel index by chosen axis and primary level.
squeeze([axis]) Squeeze length 1 dimensions.
stack([level, dropna]) Stack the prescribed level(s) from columns to index.
std([axis, skipna, level, ddof, numeric_only]) Return sample standard deviation over requested axis.
sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator sub).
subtract(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator sub).
sum([axis, skipna, level, numeric_only, …]) Return the sum of the values for the requested axis
swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex on a particular axis
tail([n]) Return the last n rows.
take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices along an axis.
to_clipboard([excel, sep]) Copy object to the system clipboard.
to_csv([path_or_buf, sep, na_rep, …]) Write DataFrame to a comma-separated values (csv) file
to_dense() Return dense representation of NDFrame (as opposed to sparse)
to_dict([orient, into]) Convert the DataFrame to a dictionary.
to_excel(excel_writer[, sheet_name, na_rep, …]) Write DataFrame to an excel sheet
to_feather(fname) write out the binary feather-format for DataFrames
to_gbq(destination_table, project_id[, …]) Write a DataFrame to a Google BigQuery table.
to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDFStore.
to_html([buf, columns, col_space, header, …]) Render a DataFrame as an HTML table.
to_json([path_or_buf, orient, date_format, …]) Convert the object to a JSON string.
to_latex([buf, columns, col_space, header, …]) Render an object to a tabular environment table.
to_msgpack([path_or_buf, encoding]) msgpack (serialize) object to input file path
to_panel() (DEPRECATED) Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
to_parquet(fname[, engine, compression]) Write a DataFrame to the binary parquet format.
to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)
to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
to_records([index, convert_datetime64]) Convert DataFrame to a NumPy record array.
to_sparse([fill_value, kind]) Convert to SparseDataFrame
to_sql(name, con[, schema, if_exists, …]) Write records stored in a DataFrame to a SQL database.
to_stata(fname[, convert_dates, …]) Export Stata binary dta files.
to_string([buf, columns, col_space, header, …]) Render a DataFrame to a console-friendly tabular output.
to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning of period
to_xarray() Return an xarray object from the pandas object.
transform(func, *args, **kwargs) Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values
transpose(*args, **kwargs) Transpose index and columns.
truediv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).
truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value.
tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if available.
tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
tz_localize(tz[, axis, level, copy, ambiguous]) Localize tz-naive TimeSeries to target time zone.
unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.
update(other[, join, overwrite, …]) Modify in place using non-NA values from another DataFrame.
var([axis, skipna, level, ddof, numeric_only]) Return unbiased variance over requested axis.
where(cond[, other, inplace, axis, level, …]) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.
xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
Scroll To Top