pandas.DataFrame.eq¶
-
DataFrame.
eq
(other, axis='columns', level=None)[source]¶ Equal to of dataframe and other, element-wise (binary operator eq).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
Parameters: - other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis : {0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- level : int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
Returns: - DataFrame of bool
Result of the comparison.
See also
DataFrame.eq
- Compare DataFrames for equality elementwise.
DataFrame.ne
- Compare DataFrames for inequality elementwise.
DataFrame.le
- Compare DataFrames for less than inequality or equality elementwise.
DataFrame.lt
- Compare DataFrames for strictly less than inequality elementwise.
DataFrame.ge
- Compare DataFrames for greater than inequality or equality elementwise.
DataFrame.gt
- Compare DataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Compare to a scalar and operator version which return the same results.
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
Compare to a list and Series by axis and operator version. As shown, for list axis is by default ‘index’, but for Series axis is by default ‘columns’.
>>> df != [100, 250, 300] cost revenue A True False B True False C True False
>>> df.ne([100, 250, 300], axis='index') cost revenue A True False B True False C True False
>>> df != pd.Series([100, 250, 300]) cost revenue 0 1 2 A True True True True True B True True True True True C True True True True True
>>> df.ne(pd.Series([100, 250, 300]), axis='columns') cost revenue 0 1 2 A True True True True True B True True True True True C True True True True True
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B' ,'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False