pandas: powerful Python data analysis toolkit¶
Date: Jan 11, 2019 Version: 0.24.0rc1
Binary Installers: https://pypi.org/project/pandas
Source Repository: https://github.com/pandas-dev/pandas
Issues & Ideas: https://github.com/pandas-dev/pandas/issues
Q&A Support: https://stackoverflow.com/questions/tagged/pandas
Developer Mailing List: https://groups.google.com/forum/#!forum/pydata
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.
pandas is well suited for many different kinds of data:
- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
- Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure
The two primary data structures of pandas, Series
(1-dimensional)
and DataFrame
(2-dimensional), handle the vast majority of typical use
cases in finance, statistics, social science, and many areas of
engineering. For R users, DataFrame
provides everything that R’s
data.frame
provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific
computing environment with many other 3rd party libraries.
Here are just a few of the things that pandas does well:
- Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
- Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
- Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
- Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
- Intuitive merging and joining data sets
- Flexible reshaping and pivoting of data sets
- Hierarchical labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format
- Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.
Some other notes
- pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool.
- pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in Python.
- pandas has been used extensively in production in financial applications.
Note
This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do invest some time in learning about NumPy first.
See the package overview for more detail about what’s in the library.
- What's New
- New features
- Backwards incompatible API changes
- Percentage change on groupby
- Dependencies have increased minimum versions
- os.linesep is used for
line_terminator
ofDataFrame.to_csv
- Proper handling of np.NaN in a string data-typed column with the Python engine
- Parsing Datetime Strings with Timezone Offsets
- Time values in
dt.end_time
andto_timestamp(how='end')
- Datetime w/tz and unique
- Sparse Data Structure Refactor
get_dummies()
always returns a DataFrame- Raise ValueError in
DataFrame.to_dict(orient='index')
- Tick DateOffset Normalize Restrictions
- Period Subtraction
- Addition/Subtraction of
NaN
fromDataFrame
- DataFrame Comparison Operations Broadcasting Changes
- DataFrame Arithmetic Operations Broadcasting Changes
- ExtensionType Changes
- Series and Index Data-Dtype Incompatibilities
- Crosstab Preserves Dtypes
- Concatenation Changes
- Datetimelike API Changes
- Other API Changes
- Deprecations
- Removal of prior version deprecations/changes
- Performance Improvements
- Bug Fixes
- Contributors
- Installation
- Contributing to pandas
- Where to start?
- Bug reports and enhancement requests
- Working with the code
- Contributing to the documentation
- Contributing to the code base
- Contributing your changes to pandas
- Package overview
- 10 Minutes to pandas
- Tutorials
- Cookbook
- Intro to Data Structures
- Series
- DataFrame
- From dict of Series or dicts
- From dict of ndarrays / lists
- From structured or record array
- From a list of dicts
- From a dict of tuples
- From a Series
- Alternate Constructors
- Column selection, addition, deletion
- Assigning New Columns in Method Chains
- Indexing / Selection
- Data alignment and arithmetic
- Transposing
- DataFrame interoperability with NumPy functions
- Console display
- DataFrame column attribute access and IPython completion
- Panel
- Deprecate Panel
- Essential Basic Functionality
- Working with Text Data
- Options and Settings
- Indexing and Selecting Data
- Different Choices for Indexing
- Basics
- Attribute Access
- Slicing ranges
- Selection By Label
- Selection By Position
- Selection By Callable
- IX Indexer is Deprecated
- Indexing with list with missing labels is Deprecated
- Selecting Random Samples
- Setting With Enlargement
- Fast scalar value getting and setting
- Boolean indexing
- Indexing with isin
- The
where()
Method and Masking - The
query()
Method - Duplicate Data
- Dictionary-like
get()
method - The
lookup()
Method - Index objects
- Set / Reset Index
- Returning a view versus a copy
- MultiIndex / Advanced Indexing
- Computational tools
- Working with missing data
- Group By: split-apply-combine
- Splitting an object into groups
- Iterating through groups
- Selecting a group
- Aggregation
- Transformation
- Filtration
- Dispatching to instance methods
- Flexible
apply
- Other useful features
- Automatic exclusion of “nuisance” columns
- Handling of (un)observed Categorical values
- NA and NaT group handling
- Grouping with ordered factors
- Grouping with a Grouper specification
- Taking the first rows of each group
- Taking the nth row of each group
- Enumerate group items
- Enumerate groups
- Plotting
- Piping function calls
- Examples
- Merge, join, and concatenate
- Concatenating objects
- Database-style DataFrame or named Series joining/merging
- Brief primer on merge methods (relational algebra)
- Checking for duplicate keys
- The merge indicator
- Merge Dtypes
- Joining on index
- Joining key columns on an index
- Joining a single Index to a MultiIndex
- Joining with two MultiIndexes
- Merging on a combination of columns and index levels
- Overlapping value columns
- Joining multiple DataFrame or Panel objects
- Merging together values within Series or DataFrame columns
- Timeseries friendly merging
- Reshaping and Pivot Tables
- Time Series / Date functionality
- Overview
- Timestamps vs. Time Spans
- Converting to Timestamps
- Generating Ranges of Timestamps
- Timestamp Limitations
- Indexing
- Iterating through groups
- Time/Date Components
- DateOffset Objects
- Time Series-Related Instance Methods
- Resampling
- Time Span Representation
- Converting Between Representations
- Representing Out-of-Bounds Spans
- Time Zone Handling
- Time Deltas
- Categorical Data
- Nullable Integer Data Type
- Visualization
- Styling
- IO Tools (Text, CSV, HDF5, …)
- CSV & Text files
- Parsing options
- Specifying column data types
- Specifying Categorical dtype
- Naming and Using Columns
- Duplicate names parsing
- Comments and Empty Lines
- Dealing with Unicode Data
- Index columns and trailing delimiters
- Date Handling
- Specifying method for floating-point conversion
- Thousand Separators
- NA Values
- Infinity
- Returning Series
- Boolean values
- Handling “bad” lines
- Dialect
- Quoting and Escape Characters
- Files with Fixed Width Columns
- Indexes
- Automatically “sniffing” the delimiter
- Reading multiple files to create a single DataFrame
- Iterating through files chunk by chunk
- Specifying the parser engine
- Reading remote files
- Writing out Data
- JSON
- HTML
- Excel files
- Clipboard
- Pickling
- msgpack
- HDF5 (PyTables)
- Feather
- Parquet
- SQL Queries
- Google BigQuery
- Stata Format
- SAS Formats
- Other file formats
- Performance Considerations
- CSV & Text files
- Enhancing Performance
- Sparse data structures
- Frequently Asked Questions (FAQ)
- rpy2 / R interface
- pandas Ecosystem
- Comparison with R / R libraries
- Comparison with SQL
- Comparison with SAS
- Comparison with Stata
- API Reference
- Input/Output
- General functions
- Series
- Constructor
- Attributes
- pandas.Series.index
- pandas.Series.array
- pandas.Series.values
- pandas.Series.dtype
- pandas.Series.ftype
- pandas.Series.shape
- pandas.Series.nbytes
- pandas.Series.ndim
- pandas.Series.size
- pandas.Series.strides
- pandas.Series.itemsize
- pandas.Series.base
- pandas.Series.T
- pandas.Series.memory_usage
- pandas.Series.hasnans
- pandas.Series.flags
- pandas.Series.empty
- pandas.Series.dtypes
- pandas.Series.ftypes
- pandas.Series.data
- pandas.Series.is_copy
- pandas.Series.name
- pandas.Series.put
- Conversion
- Indexing, iteration
- Binary operator functions
- pandas.Series.add
- pandas.Series.sub
- pandas.Series.mul
- pandas.Series.div
- pandas.Series.truediv
- pandas.Series.floordiv
- pandas.Series.mod
- pandas.Series.pow
- pandas.Series.radd
- pandas.Series.rsub
- pandas.Series.rmul
- pandas.Series.rdiv
- pandas.Series.rtruediv
- pandas.Series.rfloordiv
- pandas.Series.rmod
- pandas.Series.rpow
- pandas.Series.combine
- pandas.Series.combine_first
- pandas.Series.round
- pandas.Series.lt
- pandas.Series.gt
- pandas.Series.le
- pandas.Series.ge
- pandas.Series.ne
- pandas.Series.eq
- pandas.Series.product
- pandas.Series.dot
- Function application, GroupBy & Window
- Computations / Descriptive Stats
- pandas.Series.abs
- pandas.Series.all
- pandas.Series.any
- pandas.Series.autocorr
- pandas.Series.between
- pandas.Series.clip
- pandas.Series.clip_lower
- pandas.Series.clip_upper
- pandas.Series.corr
- pandas.Series.count
- pandas.Series.cov
- pandas.Series.cummax
- pandas.Series.cummin
- pandas.Series.cumprod
- pandas.Series.cumsum
- pandas.Series.describe
- pandas.Series.diff
- pandas.Series.factorize
- pandas.Series.kurt
- pandas.Series.mad
- pandas.Series.max
- pandas.Series.mean
- pandas.Series.median
- pandas.Series.min
- pandas.Series.mode
- pandas.Series.nlargest
- pandas.Series.nsmallest
- pandas.Series.pct_change
- pandas.Series.prod
- pandas.Series.quantile
- pandas.Series.rank
- pandas.Series.sem
- pandas.Series.skew
- pandas.Series.std
- pandas.Series.sum
- pandas.Series.var
- pandas.Series.kurtosis
- pandas.Series.unique
- pandas.Series.nunique
- pandas.Series.is_unique
- pandas.Series.is_monotonic
- pandas.Series.is_monotonic_increasing
- pandas.Series.is_monotonic_decreasing
- pandas.Series.value_counts
- pandas.Series.compound
- Reindexing / Selection / Label manipulation
- pandas.Series.align
- pandas.Series.drop
- pandas.Series.droplevel
- pandas.Series.drop_duplicates
- pandas.Series.duplicated
- pandas.Series.equals
- pandas.Series.first
- pandas.Series.head
- pandas.Series.idxmax
- pandas.Series.idxmin
- pandas.Series.isin
- pandas.Series.last
- pandas.Series.reindex
- pandas.Series.reindex_like
- pandas.Series.rename
- pandas.Series.rename_axis
- pandas.Series.reset_index
- pandas.Series.sample
- pandas.Series.select
- pandas.Series.set_axis
- pandas.Series.take
- pandas.Series.tail
- pandas.Series.truncate
- pandas.Series.where
- pandas.Series.mask
- pandas.Series.add_prefix
- pandas.Series.add_suffix
- pandas.Series.filter
- Missing data handling
- Reshaping, sorting
- Combining / joining / merging
- Time series-related
- Accessors
- Plotting
- Serialization / IO / Conversion
- pandas.Series.to_pickle
- pandas.Series.to_csv
- pandas.Series.to_dict
- pandas.Series.to_excel
- pandas.Series.to_frame
- pandas.Series.to_xarray
- pandas.Series.to_hdf
- pandas.Series.to_sql
- pandas.Series.to_msgpack
- pandas.Series.to_json
- pandas.Series.to_sparse
- pandas.Series.to_dense
- pandas.Series.to_string
- pandas.Series.to_clipboard
- pandas.Series.to_latex
- Sparse
- DataFrame
- Constructor
- Attributes and underlying data
- pandas.DataFrame.index
- pandas.DataFrame.columns
- pandas.DataFrame.dtypes
- pandas.DataFrame.ftypes
- pandas.DataFrame.get_dtype_counts
- pandas.DataFrame.get_ftype_counts
- pandas.DataFrame.select_dtypes
- pandas.DataFrame.values
- pandas.DataFrame.get_values
- pandas.DataFrame.axes
- pandas.DataFrame.ndim
- pandas.DataFrame.size
- pandas.DataFrame.shape
- pandas.DataFrame.memory_usage
- pandas.DataFrame.empty
- pandas.DataFrame.is_copy
- Conversion
- Indexing, iteration
- pandas.DataFrame.head
- pandas.DataFrame.at
- pandas.DataFrame.iat
- pandas.DataFrame.loc
- pandas.DataFrame.iloc
- pandas.DataFrame.insert
- pandas.DataFrame.__iter__
- pandas.DataFrame.items
- pandas.DataFrame.keys
- pandas.DataFrame.iteritems
- pandas.DataFrame.iterrows
- pandas.DataFrame.itertuples
- pandas.DataFrame.lookup
- pandas.DataFrame.pop
- pandas.DataFrame.tail
- pandas.DataFrame.xs
- pandas.DataFrame.get
- pandas.DataFrame.isin
- pandas.DataFrame.where
- pandas.DataFrame.mask
- pandas.DataFrame.query
- Binary operator functions
- pandas.DataFrame.add
- pandas.DataFrame.sub
- pandas.DataFrame.mul
- pandas.DataFrame.div
- pandas.DataFrame.truediv
- pandas.DataFrame.floordiv
- pandas.DataFrame.mod
- pandas.DataFrame.pow
- pandas.DataFrame.dot
- pandas.DataFrame.radd
- pandas.DataFrame.rsub
- pandas.DataFrame.rmul
- pandas.DataFrame.rdiv
- pandas.DataFrame.rtruediv
- pandas.DataFrame.rfloordiv
- pandas.DataFrame.rmod
- pandas.DataFrame.rpow
- pandas.DataFrame.lt
- pandas.DataFrame.gt
- pandas.DataFrame.le
- pandas.DataFrame.ge
- pandas.DataFrame.ne
- pandas.DataFrame.eq
- pandas.DataFrame.combine
- pandas.DataFrame.combine_first
- Function application, GroupBy & Window
- Computations / Descriptive Stats
- pandas.DataFrame.abs
- pandas.DataFrame.all
- pandas.DataFrame.any
- pandas.DataFrame.clip
- pandas.DataFrame.clip_lower
- pandas.DataFrame.clip_upper
- pandas.DataFrame.compound
- pandas.DataFrame.corr
- pandas.DataFrame.corrwith
- pandas.DataFrame.count
- pandas.DataFrame.cov
- pandas.DataFrame.cummax
- pandas.DataFrame.cummin
- pandas.DataFrame.cumprod
- pandas.DataFrame.cumsum
- pandas.DataFrame.describe
- pandas.DataFrame.diff
- pandas.DataFrame.eval
- pandas.DataFrame.kurt
- pandas.DataFrame.kurtosis
- pandas.DataFrame.mad
- pandas.DataFrame.max
- pandas.DataFrame.mean
- pandas.DataFrame.median
- pandas.DataFrame.min
- pandas.DataFrame.mode
- pandas.DataFrame.pct_change
- pandas.DataFrame.prod
- pandas.DataFrame.product
- pandas.DataFrame.quantile
- pandas.DataFrame.rank
- pandas.DataFrame.round
- pandas.DataFrame.sem
- pandas.DataFrame.skew
- pandas.DataFrame.sum
- pandas.DataFrame.std
- pandas.DataFrame.var
- pandas.DataFrame.nunique
- Reindexing / Selection / Label manipulation
- pandas.DataFrame.add_prefix
- pandas.DataFrame.add_suffix
- pandas.DataFrame.align
- pandas.DataFrame.at_time
- pandas.DataFrame.between_time
- pandas.DataFrame.drop
- pandas.DataFrame.drop_duplicates
- pandas.DataFrame.duplicated
- pandas.DataFrame.equals
- pandas.DataFrame.filter
- pandas.DataFrame.first
- pandas.DataFrame.head
- pandas.DataFrame.idxmax
- pandas.DataFrame.idxmin
- pandas.DataFrame.last
- pandas.DataFrame.reindex
- pandas.DataFrame.reindex_axis
- pandas.DataFrame.reindex_like
- pandas.DataFrame.rename
- pandas.DataFrame.rename_axis
- pandas.DataFrame.reset_index
- pandas.DataFrame.sample
- pandas.DataFrame.select
- pandas.DataFrame.set_axis
- pandas.DataFrame.set_index
- pandas.DataFrame.tail
- pandas.DataFrame.take
- pandas.DataFrame.truncate
- Missing data handling
- Reshaping, sorting, transposing
- pandas.DataFrame.droplevel
- pandas.DataFrame.pivot
- pandas.DataFrame.pivot_table
- pandas.DataFrame.reorder_levels
- pandas.DataFrame.sort_values
- pandas.DataFrame.sort_index
- pandas.DataFrame.nlargest
- pandas.DataFrame.nsmallest
- pandas.DataFrame.swaplevel
- pandas.DataFrame.stack
- pandas.DataFrame.unstack
- pandas.DataFrame.swapaxes
- pandas.DataFrame.melt
- pandas.DataFrame.squeeze
- pandas.DataFrame.to_panel
- pandas.DataFrame.to_xarray
- pandas.DataFrame.T
- pandas.DataFrame.transpose
- Combining / joining / merging
- Time series-related
- pandas.DataFrame.asfreq
- pandas.DataFrame.asof
- pandas.DataFrame.shift
- pandas.DataFrame.slice_shift
- pandas.DataFrame.tshift
- pandas.DataFrame.first_valid_index
- pandas.DataFrame.last_valid_index
- pandas.DataFrame.resample
- pandas.DataFrame.to_period
- pandas.DataFrame.to_timestamp
- pandas.DataFrame.tz_convert
- pandas.DataFrame.tz_localize
- Plotting
- pandas.DataFrame.plot
- pandas.DataFrame.plot.area
- pandas.DataFrame.plot.bar
- pandas.DataFrame.plot.barh
- pandas.DataFrame.plot.box
- pandas.DataFrame.plot.density
- pandas.DataFrame.plot.hexbin
- pandas.DataFrame.plot.hist
- pandas.DataFrame.plot.kde
- pandas.DataFrame.plot.line
- pandas.DataFrame.plot.pie
- pandas.DataFrame.plot.scatter
- pandas.DataFrame.boxplot
- pandas.DataFrame.hist
- Serialization / IO / Conversion
- pandas.DataFrame.from_csv
- pandas.DataFrame.from_dict
- pandas.DataFrame.from_items
- pandas.DataFrame.from_records
- pandas.DataFrame.info
- pandas.DataFrame.to_parquet
- pandas.DataFrame.to_pickle
- pandas.DataFrame.to_csv
- pandas.DataFrame.to_hdf
- pandas.DataFrame.to_sql
- pandas.DataFrame.to_dict
- pandas.DataFrame.to_excel
- pandas.DataFrame.to_json
- pandas.DataFrame.to_html
- pandas.DataFrame.to_feather
- pandas.DataFrame.to_latex
- pandas.DataFrame.to_stata
- pandas.DataFrame.to_msgpack
- pandas.DataFrame.to_gbq
- pandas.DataFrame.to_records
- pandas.DataFrame.to_sparse
- pandas.DataFrame.to_dense
- pandas.DataFrame.to_string
- pandas.DataFrame.to_clipboard
- pandas.DataFrame.style
- Sparse
- Pandas Arrays
- Panel
- Constructor
- Properties and underlying data
- Conversion
- Getting and setting
- Indexing, iteration, slicing
- Binary operator functions
- pandas.Panel.add
- pandas.Panel.sub
- pandas.Panel.mul
- pandas.Panel.div
- pandas.Panel.truediv
- pandas.Panel.floordiv
- pandas.Panel.mod
- pandas.Panel.pow
- pandas.Panel.radd
- pandas.Panel.rsub
- pandas.Panel.rmul
- pandas.Panel.rdiv
- pandas.Panel.rtruediv
- pandas.Panel.rfloordiv
- pandas.Panel.rmod
- pandas.Panel.rpow
- pandas.Panel.lt
- pandas.Panel.gt
- pandas.Panel.le
- pandas.Panel.ge
- pandas.Panel.ne
- pandas.Panel.eq
- Function application, GroupBy
- Computations / Descriptive Stats
- pandas.Panel.abs
- pandas.Panel.clip
- pandas.Panel.clip_lower
- pandas.Panel.clip_upper
- pandas.Panel.count
- pandas.Panel.cummax
- pandas.Panel.cummin
- pandas.Panel.cumprod
- pandas.Panel.cumsum
- pandas.Panel.max
- pandas.Panel.mean
- pandas.Panel.median
- pandas.Panel.min
- pandas.Panel.pct_change
- pandas.Panel.prod
- pandas.Panel.sem
- pandas.Panel.skew
- pandas.Panel.sum
- pandas.Panel.std
- pandas.Panel.var
- Reindexing / Selection / Label manipulation
- pandas.Panel.add_prefix
- pandas.Panel.add_suffix
- pandas.Panel.drop
- pandas.Panel.equals
- pandas.Panel.filter
- pandas.Panel.first
- pandas.Panel.last
- pandas.Panel.reindex
- pandas.Panel.reindex_axis
- pandas.Panel.reindex_like
- pandas.Panel.rename
- pandas.Panel.sample
- pandas.Panel.select
- pandas.Panel.take
- pandas.Panel.truncate
- Missing data handling
- Reshaping, sorting, transposing
- Combining / joining / merging
- Time series-related
- Serialization / IO / Conversion
- Indexing
- Date Offsets
- DateOffset
- BusinessDay
- BusinessHour
- CustomBusinessDay
- CustomBusinessHour
- MonthOffset
- MonthEnd
- MonthBegin
- BusinessMonthEnd
- BusinessMonthBegin
- CustomBusinessMonthEnd
- CustomBusinessMonthBegin
- SemiMonthOffset
- SemiMonthEnd
- SemiMonthBegin
- Week
- WeekOfMonth
- LastWeekOfMonth
- QuarterOffset
- BQuarterEnd
- BQuarterBegin
- QuarterEnd
- QuarterBegin
- YearOffset
- BYearEnd
- BYearBegin
- YearEnd
- YearBegin
- FY5253
- FY5253Quarter
- Easter
- Tick
- Day
- Hour
- Minute
- Second
- Milli
- Micro
- Nano
- BDay
- BMonthEnd
- BMonthBegin
- CBMonthEnd
- CBMonthBegin
- CDay
- Frequencies
- Window
- Standard moving window functions
- pandas.core.window.Rolling.count
- pandas.core.window.Rolling.sum
- pandas.core.window.Rolling.mean
- pandas.core.window.Rolling.median
- pandas.core.window.Rolling.var
- pandas.core.window.Rolling.std
- pandas.core.window.Rolling.min
- pandas.core.window.Rolling.max
- pandas.core.window.Rolling.corr
- pandas.core.window.Rolling.cov
- pandas.core.window.Rolling.skew
- pandas.core.window.Rolling.kurt
- pandas.core.window.Rolling.apply
- pandas.core.window.Rolling.aggregate
- pandas.core.window.Rolling.quantile
- pandas.core.window.Window.mean
- pandas.core.window.Window.sum
- Standard expanding window functions
- pandas.core.window.Expanding.count
- pandas.core.window.Expanding.sum
- pandas.core.window.Expanding.mean
- pandas.core.window.Expanding.median
- pandas.core.window.Expanding.var
- pandas.core.window.Expanding.std
- pandas.core.window.Expanding.min
- pandas.core.window.Expanding.max
- pandas.core.window.Expanding.corr
- pandas.core.window.Expanding.cov
- pandas.core.window.Expanding.skew
- pandas.core.window.Expanding.kurt
- pandas.core.window.Expanding.apply
- pandas.core.window.Expanding.aggregate
- pandas.core.window.Expanding.quantile
- Exponentially-weighted moving window functions
- Standard moving window functions
- GroupBy
- Indexing, iteration
- Function application
- Computations / Descriptive Stats
- pandas.core.groupby.GroupBy.all
- pandas.core.groupby.GroupBy.any
- pandas.core.groupby.GroupBy.bfill
- pandas.core.groupby.GroupBy.count
- pandas.core.groupby.GroupBy.cumcount
- pandas.core.groupby.GroupBy.ffill
- pandas.core.groupby.GroupBy.first
- pandas.core.groupby.GroupBy.head
- pandas.core.groupby.GroupBy.last
- pandas.core.groupby.GroupBy.max
- pandas.core.groupby.GroupBy.mean
- pandas.core.groupby.GroupBy.median
- pandas.core.groupby.GroupBy.min
- pandas.core.groupby.GroupBy.ngroup
- pandas.core.groupby.GroupBy.nth
- pandas.core.groupby.GroupBy.ohlc
- pandas.core.groupby.GroupBy.prod
- pandas.core.groupby.GroupBy.rank
- pandas.core.groupby.GroupBy.pct_change
- pandas.core.groupby.GroupBy.size
- pandas.core.groupby.GroupBy.sem
- pandas.core.groupby.GroupBy.std
- pandas.core.groupby.GroupBy.sum
- pandas.core.groupby.GroupBy.var
- pandas.core.groupby.GroupBy.tail
- pandas.core.groupby.DataFrameGroupBy.all
- pandas.core.groupby.DataFrameGroupBy.any
- pandas.core.groupby.DataFrameGroupBy.bfill
- pandas.core.groupby.DataFrameGroupBy.corr
- pandas.core.groupby.DataFrameGroupBy.count
- pandas.core.groupby.DataFrameGroupBy.cov
- pandas.core.groupby.DataFrameGroupBy.cummax
- pandas.core.groupby.DataFrameGroupBy.cummin
- pandas.core.groupby.DataFrameGroupBy.cumprod
- pandas.core.groupby.DataFrameGroupBy.cumsum
- pandas.core.groupby.DataFrameGroupBy.describe
- pandas.core.groupby.DataFrameGroupBy.diff
- pandas.core.groupby.DataFrameGroupBy.ffill
- pandas.core.groupby.DataFrameGroupBy.fillna
- pandas.core.groupby.DataFrameGroupBy.filter
- pandas.core.groupby.DataFrameGroupBy.hist
- pandas.core.groupby.DataFrameGroupBy.idxmax
- pandas.core.groupby.DataFrameGroupBy.idxmin
- pandas.core.groupby.DataFrameGroupBy.mad
- pandas.core.groupby.DataFrameGroupBy.pct_change
- pandas.core.groupby.DataFrameGroupBy.plot
- pandas.core.groupby.DataFrameGroupBy.quantile
- pandas.core.groupby.DataFrameGroupBy.rank
- pandas.core.groupby.DataFrameGroupBy.resample
- pandas.core.groupby.DataFrameGroupBy.shift
- pandas.core.groupby.DataFrameGroupBy.size
- pandas.core.groupby.DataFrameGroupBy.skew
- pandas.core.groupby.DataFrameGroupBy.take
- pandas.core.groupby.DataFrameGroupBy.tshift
- pandas.core.groupby.SeriesGroupBy.nlargest
- pandas.core.groupby.SeriesGroupBy.nsmallest
- pandas.core.groupby.SeriesGroupBy.nunique
- pandas.core.groupby.SeriesGroupBy.unique
- pandas.core.groupby.SeriesGroupBy.value_counts
- pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing
- pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing
- pandas.core.groupby.DataFrameGroupBy.corrwith
- pandas.core.groupby.DataFrameGroupBy.boxplot
- Resampling
- Indexing, iteration
- Function application
- Upsampling
- pandas.core.resample.Resampler.ffill
- pandas.core.resample.Resampler.backfill
- pandas.core.resample.Resampler.bfill
- pandas.core.resample.Resampler.pad
- pandas.core.resample.Resampler.nearest
- pandas.core.resample.Resampler.fillna
- pandas.core.resample.Resampler.asfreq
- pandas.core.resample.Resampler.interpolate
- Computations / Descriptive Stats
- pandas.core.resample.Resampler.count
- pandas.core.resample.Resampler.nunique
- pandas.core.resample.Resampler.first
- pandas.core.resample.Resampler.last
- pandas.core.resample.Resampler.max
- pandas.core.resample.Resampler.mean
- pandas.core.resample.Resampler.median
- pandas.core.resample.Resampler.min
- pandas.core.resample.Resampler.ohlc
- pandas.core.resample.Resampler.prod
- pandas.core.resample.Resampler.size
- pandas.core.resample.Resampler.sem
- pandas.core.resample.Resampler.std
- pandas.core.resample.Resampler.sum
- pandas.core.resample.Resampler.var
- pandas.core.resample.Resampler.quantile
- Style
- Styler Constructor
- Styler Properties
- Style Application
- pandas.io.formats.style.Styler.apply
- pandas.io.formats.style.Styler.applymap
- pandas.io.formats.style.Styler.where
- pandas.io.formats.style.Styler.format
- pandas.io.formats.style.Styler.set_precision
- pandas.io.formats.style.Styler.set_table_styles
- pandas.io.formats.style.Styler.set_table_attributes
- pandas.io.formats.style.Styler.set_caption
- pandas.io.formats.style.Styler.set_properties
- pandas.io.formats.style.Styler.set_uuid
- pandas.io.formats.style.Styler.clear
- pandas.io.formats.style.Styler.pipe
- Builtin Styles
- Style Export and Import
- Plotting
- General utility functions
- Extensions
- pandas.api.extensions.register_extension_dtype
- pandas.api.extensions.register_dataframe_accessor
- pandas.api.extensions.register_series_accessor
- pandas.api.extensions.register_index_accessor
- pandas.api.extensions.ExtensionDtype
- pandas.api.extensions.ExtensionDtype.kind
- pandas.api.extensions.ExtensionDtype.name
- pandas.api.extensions.ExtensionDtype.names
- pandas.api.extensions.ExtensionDtype.type
- pandas.api.extensions.ExtensionDtype.construct_array_type
- pandas.api.extensions.ExtensionDtype.construct_from_string
- pandas.api.extensions.ExtensionDtype.is_dtype
- pandas.api.extensions.ExtensionArray
- pandas.api.extensions.ExtensionArray.dtype
- pandas.api.extensions.ExtensionArray.nbytes
- pandas.api.extensions.ExtensionArray.ndim
- pandas.api.extensions.ExtensionArray.shape
- pandas.api.extensions.ExtensionArray.argsort
- pandas.api.extensions.ExtensionArray.astype
- pandas.api.extensions.ExtensionArray.copy
- pandas.api.extensions.ExtensionArray.dropna
- pandas.api.extensions.ExtensionArray.factorize
- pandas.api.extensions.ExtensionArray.fillna
- pandas.api.extensions.ExtensionArray.isna
- pandas.api.extensions.ExtensionArray.repeat
- pandas.api.extensions.ExtensionArray.searchsorted
- pandas.api.extensions.ExtensionArray.shift
- pandas.api.extensions.ExtensionArray.take
- pandas.api.extensions.ExtensionArray.unique
- pandas.arrays.PandasArray
- pandas.arrays.PandasArray.dtype
- pandas.arrays.PandasArray.nbytes
- pandas.arrays.PandasArray.ndim
- pandas.arrays.PandasArray.shape
- pandas.arrays.PandasArray.argsort
- pandas.arrays.PandasArray.astype
- pandas.arrays.PandasArray.copy
- pandas.arrays.PandasArray.dropna
- pandas.arrays.PandasArray.factorize
- pandas.arrays.PandasArray.fillna
- pandas.arrays.PandasArray.isna
- pandas.arrays.PandasArray.repeat
- pandas.arrays.PandasArray.searchsorted
- pandas.arrays.PandasArray.shift
- pandas.arrays.PandasArray.take
- pandas.arrays.PandasArray.to_numpy
- pandas.arrays.PandasArray.unique
- Developer
- Internals
- Extending Pandas
- Release Notes
- Version 0.24
- Version 0.23
- Version 0.22
- Version 0.21
- Version 0.20
- Version 0.19
- Version 0.18
- Version 0.17
- Version 0.16
- Version 0.15
- Version 0.14
- Version 0.13
- Version 0.12
- Version 0.11
- Version 0.10
- Version 0.9
- Version 0.8
- Version 0.7
- Version 0.6
- Version 0.5
- Version 0.4