Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.DataFrame.isin

DataFrame.isin(values)[source]

Whether each element in the DataFrame is contained in values.

Parameters:
values : iterable, Series, DataFrame or dict

The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.

Returns:
DataFrame

DataFrame of booleans showing whether each element in the DataFrame is contained in values.

See also

DataFrame.eq
Equality test for DataFrame.
Series.isin
Equivalent method on Series.
Series.str.contains
Test if pattern or regex is contained within a string of a Series or Index.

Examples

>>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]},
...                   index=['falcon', 'dog'])
>>> df
        num_legs  num_wings
falcon         2          2
dog            4          0

When values is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings)

>>> df.isin([0, 2])
        num_legs  num_wings
falcon      True       True
dog        False       True

When values is a dict, we can pass values to check for each column separately:

>>> df.isin({'num_wings': [0, 3]})
        num_legs  num_wings
falcon     False      False
dog        False       True

When values is a Series or DataFrame the index and column must match. Note that ‘falcon’ does not match based on the number of legs in df2.

>>> other = pd.DataFrame({'num_legs': [8, 2],'num_wings': [0, 2]},
...                      index=['spider', 'falcon'])
>>> df.isin(other)
        num_legs  num_wings
falcon      True       True
dog        False      False
Scroll To Top