pandas.MultiIndex.from_frame

classmethod MultiIndex.from_frame(df, sortorder=None, names=None)[source]

Make a MultiIndex from a DataFrame.

New in version 0.24.0.

Parameters:
df : DataFrame

DataFrame to be converted to MultiIndex.

sortorder : int, optional

Level of sortedness (must be lexicographically sorted by that level).

names : list-like, optional

If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence.

Returns:
MultiIndex

The MultiIndex representation of the given DataFrame.

See also

MultiIndex.from_arrays
Convert list of arrays to MultiIndex.
MultiIndex.from_tuples
Convert list of tuples to MultiIndex.
MultiIndex.from_product
Make a MultiIndex from cartesian product of iterables.

Examples

>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
...                    ['NJ', 'Temp'], ['NJ', 'Precip']],
...                   columns=['a', 'b'])
>>> df
      a       b
0    HI    Temp
1    HI  Precip
2    NJ    Temp
3    NJ  Precip
>>> pd.MultiIndex.from_frame(df)
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
           labels=[[0, 0, 1, 1], [1, 0, 1, 0]],
           names=['a', 'b'])

Using explicit names, instead of the column names

>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
           labels=[[0, 0, 1, 1], [1, 0, 1, 0]],
           names=['state', 'observation'])
Scroll To Top