pandas.DataFrame.T¶
-
DataFrame.
T
¶ Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property
T
is an accessor to the methodtranspose()
.Parameters: - copy : bool, default False
If True, the underlying data is copied. Otherwise (default), no copy is made if possible.
- *args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with numpy.
Returns: - DataFrame
The transposed DataFrame.
See also
numpy.transpose
- Permute the dimensions of a given array.
Notes
Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object dtype. In such a case, a copy of the data is always made.
Examples
Square DataFrame with homogeneous dtype
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4
>>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype:
>>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object
Non-square DataFrame with mixed dtypes
>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:
>>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object