Series¶
Constructor¶
Series ([data, index, dtype, name, copy, …]) |
One-dimensional ndarray with axis labels (including time series). |
Attributes¶
Axes
Series.index |
The index (axis labels) of the Series. |
Series.array |
The ExtensionArray of the data backing this Series or Index. |
Series.values |
Return Series as ndarray or ndarray-like depending on the dtype. |
Series.dtype |
Return the dtype object of the underlying data. |
Series.ftype |
Return if the data is sparse|dense. |
Series.shape |
Return a tuple of the shape of the underlying data. |
Series.nbytes |
Return the number of bytes in the underlying data. |
Series.ndim |
Number of dimensions of the underlying data, by definition 1. |
Series.size |
Return the number of elements in the underlying data. |
Series.strides |
Return the strides of the underlying data. |
Series.itemsize |
Return the size of the dtype of the item of the underlying data. |
Series.base |
Return the base object if the memory of the underlying data is shared. |
Series.T |
Return the transpose, which is by definition self. |
Series.memory_usage ([index, deep]) |
Return the memory usage of the Series. |
Series.hasnans |
Return if I have any nans; enables various perf speedups. |
Series.flags |
|
Series.empty |
|
Series.dtypes |
Return the dtype object of the underlying data. |
Series.ftypes |
Return if the data is sparse|dense. |
Series.data |
Return the data pointer of the underlying data. |
Series.is_copy |
Return the copy. |
Series.name |
Return name of the Series. |
Series.put (*args, **kwargs) |
Applies the put method to its values attribute if it has one. |
Conversion¶
Series.astype (dtype[, copy, errors]) |
Cast a pandas object to a specified dtype dtype . |
Series.infer_objects () |
Attempt to infer better dtypes for object columns. |
Series.convert_objects ([convert_dates, …]) |
(DEPRECATED) Attempt to infer better dtype for object columns. |
Series.copy ([deep]) |
Make a copy of this object’s indices and data. |
Series.bool () |
Return the bool of a single element PandasObject. |
Series.to_numpy ([dtype, copy]) |
A NumPy ndarray representing the values in this Series or Index. |
Series.to_period ([freq, copy]) |
Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). |
Series.to_timestamp ([freq, how, copy]) |
Cast to datetimeindex of timestamps, at beginning of period. |
Series.to_list () |
Return a list of the values. |
Series.get_values () |
Same as values (but handles sparseness conversions); is a view. |
Series.__array__ ([dtype]) |
Return the values as a NumPy array. |
Indexing, iteration¶
Series.get (key[, default]) |
Get item from object for given key (DataFrame column, Panel slice, etc.). |
Series.at |
Access a single value for a row/column label pair. |
Series.iat |
Access a single value for a row/column pair by integer position. |
Series.loc |
Access a group of rows and columns by label(s) or a boolean array. |
Series.iloc |
Purely integer-location based indexing for selection by position. |
Series.__iter__ () |
Return an iterator of the values. |
Series.iteritems () |
Lazily iterate over (index, value) tuples. |
Series.items () |
Lazily iterate over (index, value) tuples. |
Series.keys () |
Alias for index. |
Series.pop (item) |
Return item and drop from frame. |
Series.item () |
Return the first element of the underlying data as a python scalar. |
Series.xs (key[, axis, level, drop_level]) |
Return cross-section from the Series/DataFrame. |
For more information on .at
, .iat
, .loc
, and
.iloc
, see the indexing documentation.
Binary operator functions¶
Series.add (other[, level, fill_value, axis]) |
Addition of series and other, element-wise (binary operator add). |
Series.sub (other[, level, fill_value, axis]) |
Subtraction of series and other, element-wise (binary operator sub). |
Series.mul (other[, level, fill_value, axis]) |
Multiplication of series and other, element-wise (binary operator mul). |
Series.div (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator truediv). |
Series.truediv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator truediv). |
Series.floordiv (other[, level, fill_value, axis]) |
Integer division of series and other, element-wise (binary operator floordiv). |
Series.mod (other[, level, fill_value, axis]) |
Modulo of series and other, element-wise (binary operator mod). |
Series.pow (other[, level, fill_value, axis]) |
Exponential power of series and other, element-wise (binary operator pow). |
Series.radd (other[, level, fill_value, axis]) |
Addition of series and other, element-wise (binary operator radd). |
Series.rsub (other[, level, fill_value, axis]) |
Subtraction of series and other, element-wise (binary operator rsub). |
Series.rmul (other[, level, fill_value, axis]) |
Multiplication of series and other, element-wise (binary operator rmul). |
Series.rdiv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rtruediv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rfloordiv (other[, level, fill_value, …]) |
Integer division of series and other, element-wise (binary operator rfloordiv). |
Series.rmod (other[, level, fill_value, axis]) |
Modulo of series and other, element-wise (binary operator rmod). |
Series.rpow (other[, level, fill_value, axis]) |
Exponential power of series and other, element-wise (binary operator rpow). |
Series.combine (other, func[, fill_value]) |
Combine the Series with a Series or scalar according to func. |
Series.combine_first (other) |
Combine Series values, choosing the calling Series’s values first. |
Series.round ([decimals]) |
Round each value in a Series to the given number of decimals. |
Series.lt (other[, level, fill_value, axis]) |
Less than of series and other, element-wise (binary operator lt). |
Series.gt (other[, level, fill_value, axis]) |
Greater than of series and other, element-wise (binary operator gt). |
Series.le (other[, level, fill_value, axis]) |
Less than or equal to of series and other, element-wise (binary operator le). |
Series.ge (other[, level, fill_value, axis]) |
Greater than or equal to of series and other, element-wise (binary operator ge). |
Series.ne (other[, level, fill_value, axis]) |
Not equal to of series and other, element-wise (binary operator ne). |
Series.eq (other[, level, fill_value, axis]) |
Equal to of series and other, element-wise (binary operator eq). |
Series.product ([axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
Series.dot (other) |
Compute the dot product between the Series and the columns of other. |
Function application, GroupBy & Window¶
Series.apply (func[, convert_dtype, args]) |
Invoke function on values of Series. |
Series.agg (func[, axis]) |
Aggregate using one or more operations over the specified axis. |
Series.aggregate (func[, axis]) |
Aggregate using one or more operations over the specified axis. |
Series.transform (func[, axis]) |
Call func on self producing a Series with transformed values and that has the same axis length as self. |
Series.map (arg[, na_action]) |
Map values of Series according to input correspondence. |
Series.groupby ([by, axis, level, as_index, …]) |
Group DataFrame or Series using a mapper or by a Series of columns. |
Series.rolling (window[, min_periods, …]) |
Provides rolling window calculations. |
Series.expanding ([min_periods, center, axis]) |
Provides expanding transformations. |
Series.ewm ([com, span, halflife, alpha, …]) |
Provides exponential weighted functions. |
Series.pipe (func, *args, **kwargs) |
Apply func(self, *args, **kwargs). |
Computations / Descriptive Stats¶
Series.abs () |
Return a Series/DataFrame with absolute numeric value of each element. |
Series.all ([axis, bool_only, skipna, level]) |
Return whether all elements are True, potentially over an axis. |
Series.any ([axis, bool_only, skipna, level]) |
Return whether any element is True, potentially over an axis. |
Series.autocorr ([lag]) |
Compute the lag-N autocorrelation. |
Series.between (left, right[, inclusive]) |
Return boolean Series equivalent to left <= series <= right. |
Series.clip ([lower, upper, axis, inplace]) |
Trim values at input threshold(s). |
Series.clip_lower (threshold[, axis, inplace]) |
(DEPRECATED) Trim values below a given threshold. |
Series.clip_upper (threshold[, axis, inplace]) |
(DEPRECATED) Trim values above a given threshold. |
Series.corr (other[, method, min_periods]) |
Compute correlation with other Series, excluding missing values. |
Series.count ([level]) |
Return number of non-NA/null observations in the Series. |
Series.cov (other[, min_periods]) |
Compute covariance with Series, excluding missing values. |
Series.cummax ([axis, skipna]) |
Return cumulative maximum over a DataFrame or Series axis. |
Series.cummin ([axis, skipna]) |
Return cumulative minimum over a DataFrame or Series axis. |
Series.cumprod ([axis, skipna]) |
Return cumulative product over a DataFrame or Series axis. |
Series.cumsum ([axis, skipna]) |
Return cumulative sum over a DataFrame or Series axis. |
Series.describe ([percentiles, include, exclude]) |
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. |
Series.diff ([periods]) |
First discrete difference of element. |
Series.factorize ([sort, na_sentinel]) |
Encode the object as an enumerated type or categorical variable. |
Series.kurt ([axis, skipna, level, numeric_only]) |
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad ([axis, skipna, level]) |
Return the mean absolute deviation of the values for the requested axis. |
Series.max ([axis, skipna, level, numeric_only]) |
Return the maximum of the values for the requested axis. |
Series.mean ([axis, skipna, level, numeric_only]) |
Return the mean of the values for the requested axis. |
Series.median ([axis, skipna, level, …]) |
Return the median of the values for the requested axis. |
Series.min ([axis, skipna, level, numeric_only]) |
Return the minimum of the values for the requested axis. |
Series.mode ([dropna]) |
Return the mode(s) of the dataset. |
Series.nlargest ([n, keep]) |
Return the largest n elements. |
Series.nsmallest ([n, keep]) |
Return the smallest n elements. |
Series.pct_change ([periods, fill_method, …]) |
Percentage change between the current and a prior element. |
Series.prod ([axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
Series.quantile ([q, interpolation]) |
Return value at the given quantile. |
Series.rank ([axis, method, numeric_only, …]) |
Compute numerical data ranks (1 through n) along axis. |
Series.sem ([axis, skipna, level, ddof, …]) |
Return unbiased standard error of the mean over requested axis. |
Series.skew ([axis, skipna, level, numeric_only]) |
Return unbiased skew over requested axis Normalized by N-1. |
Series.std ([axis, skipna, level, ddof, …]) |
Return sample standard deviation over requested axis. |
Series.sum ([axis, skipna, level, …]) |
Return the sum of the values for the requested axis. |
Series.var ([axis, skipna, level, ddof, …]) |
Return unbiased variance over requested axis. |
Series.kurtosis ([axis, skipna, level, …]) |
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.unique () |
Return unique values of Series object. |
Series.nunique ([dropna]) |
Return number of unique elements in the object. |
Series.is_unique |
Return boolean if values in the object are unique. |
Series.is_monotonic |
Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_increasing |
Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_decreasing |
Return boolean if values in the object are monotonic_decreasing. |
Series.value_counts ([normalize, sort, …]) |
Return a Series containing counts of unique values. |
Series.compound ([axis, skipna, level]) |
Return the compound percentage of the values for the requested axis. |
Reindexing / Selection / Label manipulation¶
Series.align (other[, join, axis, level, …]) |
Align two objects on their axes with the specified join method for each axis Index. |
Series.drop ([labels, axis, index, columns, …]) |
Return Series with specified index labels removed. |
Series.droplevel (level[, axis]) |
Return DataFrame with requested index / column level(s) removed. |
Series.drop_duplicates ([keep, inplace]) |
Return Series with duplicate values removed. |
Series.duplicated ([keep]) |
Indicate duplicate Series values. |
Series.equals (other) |
Test whether two objects contain the same elements. |
Series.first (offset) |
Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head ([n]) |
Return the first n rows. |
Series.idxmax ([axis, skipna]) |
Return the row label of the maximum value. |
Series.idxmin ([axis, skipna]) |
Return the row label of the minimum value. |
Series.isin (values) |
Check whether values are contained in Series. |
Series.last (offset) |
Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex ([index]) |
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like (other[, method, copy, …]) |
Return an object with matching indices as other object. |
Series.rename ([index]) |
Alter Series index labels or name. |
Series.rename_axis ([mapper, index, columns, …]) |
Set the name of the axis for the index or columns. |
Series.reset_index ([level, drop, name, inplace]) |
Generate a new DataFrame or Series with the index reset. |
Series.sample ([n, frac, replace, weights, …]) |
Return a random sample of items from an axis of object. |
Series.select (crit[, axis]) |
(DEPRECATED) Return data corresponding to axis labels matching criteria. |
Series.set_axis (labels[, axis, inplace]) |
Assign desired index to given axis. |
Series.take (indices[, axis, convert, is_copy]) |
Return the elements in the given positional indices along an axis. |
Series.tail ([n]) |
Return the last n rows. |
Series.truncate ([before, after, axis, copy]) |
Truncate a Series or DataFrame before and after some index value. |
Series.where (cond[, other, inplace, axis, …]) |
Replace values where the condition is False. |
Series.mask (cond[, other, inplace, axis, …]) |
Replace values where the condition is True. |
Series.add_prefix (prefix) |
Prefix labels with string prefix. |
Series.add_suffix (suffix) |
Suffix labels with string suffix. |
Series.filter ([items, like, regex, axis]) |
Subset rows or columns of dataframe according to labels in the specified index. |
Missing data handling¶
Series.isna () |
Detect missing values. |
Series.notna () |
Detect existing (non-missing) values. |
Series.dropna ([axis, inplace]) |
Return a new Series with missing values removed. |
Series.fillna ([value, method, axis, …]) |
Fill NA/NaN values using the specified method. |
Series.interpolate ([method, axis, limit, …]) |
Interpolate values according to different methods. |
Reshaping, sorting¶
Series.argsort ([axis, kind, order]) |
Overrides ndarray.argsort. |
Series.argmin ([axis, skipna]) |
(DEPRECATED) Return the row label of the minimum value. |
Series.argmax ([axis, skipna]) |
(DEPRECATED) Return the row label of the maximum value. |
Series.reorder_levels (order) |
Rearrange index levels using input order. |
Series.sort_values ([axis, ascending, …]) |
Sort by the values. |
Series.sort_index ([axis, level, ascending, …]) |
Sort Series by index labels. |
Series.swaplevel ([i, j, copy]) |
Swap levels i and j in a MultiIndex. |
Series.unstack ([level, fill_value]) |
Unstack, a.k.a. |
Series.searchsorted (value[, side, sorter]) |
Find indices where elements should be inserted to maintain order. |
Series.ravel ([order]) |
Return the flattened underlying data as an ndarray. |
Series.repeat (repeats[, axis]) |
Repeat elements of a Series. |
Series.squeeze ([axis]) |
Squeeze 1 dimensional axis objects into scalars. |
Series.view ([dtype]) |
Create a new view of the Series. |
Combining / joining / merging¶
Series.append (to_append[, ignore_index, …]) |
Concatenate two or more Series. |
Series.replace ([to_replace, value, inplace, …]) |
Replace values given in to_replace with value. |
Series.update (other) |
Modify Series in place using non-NA values from passed Series. |
Accessors¶
Pandas provides dtype-specific methods under various accessors.
These are separate namespaces within Series
that only apply
to specific data types.
Data Type | Accessor |
---|---|
Datetime, Timedelta, Period | dt |
String | str |
Categorical | cat |
Sparse | sparse |
Datetimelike Properties¶
Series.dt
can be used to access the values of the series as
datetimelike and return several properties.
These can be accessed like Series.dt.<property>
.
Datetime Properties¶
Series.dt.date |
Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). |
Series.dt.time |
Returns numpy array of datetime.time. |
Series.dt.timetz |
Returns numpy array of datetime.time also containing timezone information. |
Series.dt.year |
The year of the datetime. |
Series.dt.month |
The month as January=1, December=12. |
Series.dt.day |
The days of the datetime. |
Series.dt.hour |
The hours of the datetime. |
Series.dt.minute |
The minutes of the datetime. |
Series.dt.second |
The seconds of the datetime. |
Series.dt.microsecond |
The microseconds of the datetime. |
Series.dt.nanosecond |
The nanoseconds of the datetime. |
Series.dt.week |
The week ordinal of the year. |
Series.dt.weekofyear |
The week ordinal of the year. |
Series.dt.dayofweek |
The day of the week with Monday=0, Sunday=6. |
Series.dt.weekday |
The day of the week with Monday=0, Sunday=6. |
Series.dt.dayofyear |
The ordinal day of the year. |
Series.dt.quarter |
The quarter of the date. |
Series.dt.is_month_start |
Indicates whether the date is the first day of the month. |
Series.dt.is_month_end |
Indicates whether the date is the last day of the month. |
Series.dt.is_quarter_start |
Indicator for whether the date is the first day of a quarter. |
Series.dt.is_quarter_end |
Indicator for whether the date is the last day of a quarter. |
Series.dt.is_year_start |
Indicate whether the date is the first day of a year. |
Series.dt.is_year_end |
Indicate whether the date is the last day of the year. |
Series.dt.is_leap_year |
Boolean indicator if the date belongs to a leap year. |
Series.dt.daysinmonth |
The number of days in the month. |
Series.dt.days_in_month |
The number of days in the month. |
Series.dt.tz |
Return timezone, if any. |
Series.dt.freq |
Datetime Methods¶
Series.dt.to_period (*args, **kwargs) |
Cast to PeriodArray/Index at a particular frequency. |
Series.dt.to_pydatetime () |
Return the data as an array of native Python datetime objects. |
Series.dt.tz_localize (*args, **kwargs) |
Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. |
Series.dt.tz_convert (*args, **kwargs) |
Convert tz-aware Datetime Array/Index from one time zone to another. |
Series.dt.normalize (*args, **kwargs) |
Convert times to midnight. |
Series.dt.strftime (*args, **kwargs) |
Convert to Index using specified date_format. |
Series.dt.round (*args, **kwargs) |
Perform round operation on the data to the specified freq. |
Series.dt.floor (*args, **kwargs) |
Perform floor operation on the data to the specified freq. |
Series.dt.ceil (*args, **kwargs) |
Perform ceil operation on the data to the specified freq. |
Series.dt.month_name (*args, **kwargs) |
Return the month names of the DateTimeIndex with specified locale. |
Series.dt.day_name (*args, **kwargs) |
Return the day names of the DateTimeIndex with specified locale. |
Period Properties¶
Series.dt.qyear |
|
Series.dt.start_time |
|
Series.dt.end_time |
Timedelta Properties¶
Series.dt.days |
Number of days for each element. |
Series.dt.seconds |
Number of seconds (>= 0 and less than 1 day) for each element. |
Series.dt.microseconds |
Number of microseconds (>= 0 and less than 1 second) for each element. |
Series.dt.nanoseconds |
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. |
Series.dt.components |
Return a Dataframe of the components of the Timedeltas. |
Timedelta Methods¶
Series.dt.to_pytimedelta () |
Return an array of native datetime.timedelta objects. |
Series.dt.total_seconds (*args, **kwargs) |
Return total duration of each element expressed in seconds. |
String handling¶
Series.str
can be used to access the values of the series as
strings and apply several methods to it. These can be accessed like
Series.str.<function/property>
.
Series.str.capitalize () |
Convert strings in the Series/Index to be capitalized. |
Series.str.cat ([others, sep, na_rep, join]) |
Concatenate strings in the Series/Index with given separator. |
Series.str.center (width[, fillchar]) |
Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains (pat[, case, flags, na, …]) |
Test if pattern or regex is contained within a string of a Series or Index. |
Series.str.count (pat[, flags]) |
Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode (encoding[, errors]) |
Decode character string in the Series/Index using indicated encoding. |
Series.str.encode (encoding[, errors]) |
Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith (pat[, na]) |
Test if the end of each string element matches a pattern. |
Series.str.extract (pat[, flags, expand]) |
Extract capture groups in the regex pat as columns in a DataFrame. |
Series.str.extractall (pat[, flags]) |
For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find (sub[, start, end]) |
Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall (pat[, flags]) |
Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get (i) |
Extract element from each component at specified position. |
Series.str.index (sub[, start, end]) |
Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join (sep) |
Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len () |
Computes the length of each element in the Series/Index. |
Series.str.ljust (width[, fillchar]) |
Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower () |
Convert strings in the Series/Index to lowercase. |
Series.str.lstrip ([to_strip]) |
Remove leading and trailing characters. |
Series.str.match (pat[, case, flags, na]) |
Determine if each string matches a regular expression. |
Series.str.normalize (form) |
Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad (width[, side, fillchar]) |
Pad strings in the Series/Index up to width. |
Series.str.partition ([sep, expand]) |
Split the string at the first occurrence of sep. |
Series.str.repeat (repeats) |
Duplicate each string in the Series or Index. |
Series.str.replace (pat, repl[, n, case, …]) |
Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind (sub[, start, end]) |
Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex (sub[, start, end]) |
Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust (width[, fillchar]) |
Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition ([sep, expand]) |
Split the string at the last occurrence of sep. |
Series.str.rstrip ([to_strip]) |
Remove leading and trailing characters. |
Series.str.slice ([start, stop, step]) |
Slice substrings from each element in the Series or Index. |
Series.str.slice_replace ([start, stop, repl]) |
Replace a positional slice of a string with another value. |
Series.str.split ([pat, n, expand]) |
Split strings around given separator/delimiter. |
Series.str.rsplit ([pat, n, expand]) |
Split strings around given separator/delimiter. |
Series.str.startswith (pat[, na]) |
Test if the start of each string element matches a pattern. |
Series.str.strip ([to_strip]) |
Remove leading and trailing characters. |
Series.str.swapcase () |
Convert strings in the Series/Index to be swapcased. |
Series.str.title () |
Convert strings in the Series/Index to titlecase. |
Series.str.translate (table[, deletechars]) |
Map all characters in the string through the given mapping table. |
Series.str.upper () |
Convert strings in the Series/Index to uppercase. |
Series.str.wrap (width, **kwargs) |
Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill (width) |
Pad strings in the Series/Index by prepending ‘0’ characters. |
Series.str.isalnum () |
Check whether all characters in each string are alphanumeric. |
Series.str.isalpha () |
Check whether all characters in each string are alphabetic. |
Series.str.isdigit () |
Check whether all characters in each string are digits. |
Series.str.isspace () |
Check whether all characters in each string are whitespace. |
Series.str.islower () |
Check whether all characters in each string are lowercase. |
Series.str.isupper () |
Check whether all characters in each string are uppercase. |
Series.str.istitle () |
Check whether all characters in each string are titlecase. |
Series.str.isnumeric () |
Check whether all characters in each string are numeric. |
Series.str.isdecimal () |
Check whether all characters in each string are decimal. |
Series.str.get_dummies ([sep]) |
Split each string in the Series by sep and return a frame of dummy/indicator variables. |
Categorical Accessor¶
Categorical-dtype specific methods and attributes are available under
the Series.cat
accessor.
Series.cat.categories |
The categories of this categorical. |
Series.cat.ordered |
Whether the categories have an ordered relationship. |
Series.cat.codes |
Return Series of codes as well as the index. |
Series.cat.rename_categories (*args, **kwargs) |
Renames categories. |
Series.cat.reorder_categories (*args, **kwargs) |
Reorders categories as specified in new_categories. |
Series.cat.add_categories (*args, **kwargs) |
Add new categories. |
Series.cat.remove_categories (*args, **kwargs) |
Removes the specified categories. |
Series.cat.remove_unused_categories (*args, …) |
Removes categories which are not used. |
Series.cat.set_categories (*args, **kwargs) |
Sets the categories to the specified new_categories. |
Series.cat.as_ordered (*args, **kwargs) |
Set the Categorical to be ordered. |
Series.cat.as_unordered (*args, **kwargs) |
Set the Categorical to be unordered. |
Sparse Accessor¶
Sparse-dtype specific methods and attributes are provided under the
Series.sparse
accessor.
Series.sparse.npoints |
The number of non- fill_value points. |
Series.sparse.density |
The percent of non- fill_value points, as decimal. |
Series.sparse.fill_value |
Elements in data that are fill_value are not stored. |
Series.sparse.sp_values |
An ndarray containing the non- fill_value values. |
Series.sparse.from_coo (A[, dense_index]) |
Create a SparseSeries from a scipy.sparse.coo_matrix. |
Series.sparse.to_coo ([row_levels, …]) |
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
Plotting¶
Series.plot
is both a callable method and a namespace attribute for
specific plotting methods of the form Series.plot.<kind>
.
Series.plot ([kind, ax, figsize, ….]) |
Series plotting accessor and method |
Series.plot.area (**kwds) |
Area plot. |
Series.plot.bar (**kwds) |
Vertical bar plot. |
Series.plot.barh (**kwds) |
Horizontal bar plot. |
Series.plot.box (**kwds) |
Boxplot. |
Series.plot.density ([bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.hist ([bins]) |
Histogram. |
Series.plot.kde ([bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.line (**kwds) |
Line plot. |
Series.plot.pie (**kwds) |
Pie chart. |
Series.hist ([by, ax, grid, xlabelsize, …]) |
Draw histogram of the input series using matplotlib. |
Serialization / IO / Conversion¶
Series.to_pickle (path[, compression, protocol]) |
Pickle (serialize) object to file. |
Series.to_csv (*args, **kwargs) |
Write object to a comma-separated values (csv) file. |
Series.to_dict ([into]) |
Convert Series to {label -> value} dict or dict-like object. |
Series.to_excel (excel_writer[, sheet_name, …]) |
Write object to an Excel sheet. |
Series.to_frame ([name]) |
Convert Series to DataFrame. |
Series.to_xarray () |
Return an xarray object from the pandas object. |
Series.to_hdf (path_or_buf, key, **kwargs) |
Write the contained data to an HDF5 file using HDFStore. |
Series.to_sql (name, con[, schema, …]) |
Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack ([path_or_buf, encoding]) |
Serialize object to input file path using msgpack format. |
Series.to_json ([path_or_buf, orient, …]) |
Convert the object to a JSON string. |
Series.to_sparse ([kind, fill_value]) |
Convert Series to SparseSeries. |
Series.to_dense () |
Return dense representation of NDFrame (as opposed to sparse). |
Series.to_string ([buf, na_rep, …]) |
Render a string representation of the Series. |
Series.to_clipboard ([excel, sep]) |
Copy object to the system clipboard. |
Series.to_latex ([buf, columns, col_space, …]) |
Render an object to a LaTeX tabular environment table. |
Sparse¶
SparseSeries.to_coo ([row_levels, …]) |
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
SparseSeries.from_coo (A[, dense_index]) |
Create a SparseSeries from a scipy.sparse.coo_matrix. |