pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs)[source]

Group DataFrame or Series using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Parameters:
by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted a (single) key.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Split along rows (0) or columns (1).

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

as_index : bool, default True

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output.

sort : bool, default True

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group.

group_keys : bool, default True

When calling apply, add group keys to index to identify pieces.

squeeze : bool, default False

Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

observed : bool, default False

This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

**kwargs

Optional, only accepts keyword argument ‘mutated’ and is passed to groupby.

Returns:
DataFrameGroupBy or SeriesGroupBy

Depends on the calling object and returns groupby object that contains information about the groups.

See also

resample
Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

>>> df = pd.DataFrame({'Animal' : ['Falcon', 'Falcon',
...                                'Parrot', 'Parrot'],
...                    'Max Speed' : [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0

Hierarchical Indexes

We can groupby different levels of a hierarchical index using the level parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
...           ['Capitve', 'Wild', 'Capitve', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed' : [390., 350., 30., 20.]},
...                    index=index)
>>> df
                Max Speed
Animal Type
Falcon Capitve      390.0
       Wild         350.0
Parrot Capitve       30.0
       Wild          20.0
>>> df.groupby(level=0).mean()
        Max Speed
Animal
Falcon      370.0
Parrot       25.0
>>> df.groupby(level=1).mean()
         Max Speed
Type
Capitve      210.0
Wild         185.0
Scroll To Top