pandas.DataFrame.lt¶
- 
DataFrame.lt(other, axis='columns', level=None)[source]¶
- Less than of dataframe and other, element-wise (binary operator lt). - Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators. - Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison. - Parameters: - other : scalar, sequence, Series, or DataFrame
- Any single or multiple element data structure, or list-like object. 
- axis : {0 or ‘index’, 1 or ‘columns’}, default ‘columns’
- Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). 
- level : int or label
- Broadcast across a level, matching Index values on the passed MultiIndex level. 
 - Returns: - DataFrame of bool
- Result of the comparison. 
 - See also - DataFrame.eq
- Compare DataFrames for equality elementwise.
- DataFrame.ne
- Compare DataFrames for inequality elementwise.
- DataFrame.le
- Compare DataFrames for less than inequality or equality elementwise.
- DataFrame.lt
- Compare DataFrames for strictly less than inequality elementwise.
- DataFrame.ge
- Compare DataFrames for greater than inequality or equality elementwise.
- DataFrame.gt
- Compare DataFrames for strictly greater than inequality elementwise.
 - Notes - Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN). - Examples - >>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 - Comparison with a scalar, using either the operator or method: - >>> df == 100 cost revenue A False True B False False C True False - >>> df.eq(100) cost revenue A False True B False False C True False - When other is a - Series, the columns of a DataFrame are aligned with the index of other and broadcast:- >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True - Use the method to control the broadcast axis: - >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True - When comparing to an arbitrary sequence, the number of columns must match the number elements in other: - >>> df == [250, 100] cost revenue A True True B False False C False False - Use the method to control the axis: - >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False - Compare to a DataFrame of different shape. - >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 - >>> df.gt(other) cost revenue A False False B False False C False True D False False - Compare to a MultiIndex by level. - >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 - >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False