pandas.DataFrame.min

DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)[source]

Return the minimum of the values for the requested axis.

If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.
Parameters:
axis : {index (0), columns (1)}

Axis for the function to be applied on.

skipna : bool, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

numeric_only : bool, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**kwargs

Additional keyword arguments to be passed to the function.

Returns:
min : Series or DataFrame (if level specified)

See also

Series.sum
Return the sum.
Series.min
Return the minimum.
Series.max
Return the maximum.
Series.idxmin
Return the index of the minimum.
Series.idxmax
Return the index of the maximum.
DataFrame.min
Return the sum over the requested axis.
DataFrame.min
Return the minimum over the requested axis.
DataFrame.max
Return the maximum over the requested axis.
DataFrame.idxmin
Return the index of the minimum over the requested axis.
DataFrame.idxmax
Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64
>>> s.min()
0

Min using level names, as well as indices.

>>> s.min(level='blooded')
blooded
warm    2
cold    0
Name: legs, dtype: int64
>>> s.min(level=0)
blooded
warm    2
cold    0
Name: legs, dtype: int64
Scroll To Top