pandas.Index.isnull¶
-
Index.isnull(self)[source]¶ Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as
None,numpy.NaNorpd.NaT, get mapped toTruevalues. Everything else get mapped toFalsevalues. Characters such as empty strings ‘’ ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True).New in version 0.20.0.
Returns: - numpy.ndarray
A boolean array of whether my values are NA.
See also
Index.notna- Boolean inverse of isna.
Index.dropna- Omit entries with missing values.
isna- Top-level isna.
Series.isna- Detect missing values in Series object.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool)
Empty strings are not considered NA values. None is considered an NA value.
>>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool)
For datetimes, NaT (Not a Time) is considered as an NA value.
>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool)