pandas.merge_ordered¶
-
pandas.
merge_ordered
(left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=('_x', '_y'), how='outer')[source]¶ Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples)
Parameters: - left : DataFrame
- right : DataFrame
- on : label or list
Field names to join on. Must be found in both DataFrames.
- left_on : label or list, or array-like
Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
- right_on : label or list, or array-like
Field names to join on in right DataFrame or vector/list of vectors per left_on docs
- left_by : column name or list of column names
Group left DataFrame by group columns and merge piece by piece with right DataFrame
- right_by : column name or list of column names
Group right DataFrame by group columns and merge piece by piece with left DataFrame
- fill_method : {‘ffill’, None}, default None
Interpolation method for data
- suffixes : Sequence, default is (“_x”, “_y”)
A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None.
Changed in version 0.25.0.
- how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘outer’
- left: use only keys from left frame (SQL: left outer join)
- right: use only keys from right frame (SQL: right outer join)
- outer: use union of keys from both frames (SQL: full outer join)
- inner: use intersection of keys from both frames (SQL: inner join)
New in version 0.19.0.
Returns: - merged : DataFrame
The output type will the be same as ‘left’, if it is a subclass of DataFrame.
See also
Examples
>>> A >>> B key lvalue group key rvalue 0 a 1 a 0 b 1 1 c 2 a 1 c 2 2 e 3 a 2 d 3 3 a 1 b 4 c 2 b 5 e 3 b
>>> merge_ordered(A, B, fill_method='ffill', left_by='group') group key lvalue rvalue 0 a a 1 NaN 1 a b 1 1.0 2 a c 2 2.0 3 a d 2 3.0 4 a e 3 3.0 5 b a 1 NaN 6 b b 1 1.0 7 b c 2 2.0 8 b d 2 3.0 9 b e 3 3.0