Working with text data¶
Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the str attribute and generally have names matching
the equivalent (scalar) built-in string methods:
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [2]: s.str.lower() Out[2]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object In [3]: s.str.upper() Out[3]: 0 A 1 B 2 C 3 AABA 4 BACA 5 NaN 6 CABA 7 DOG 8 CAT dtype: object In [4]: s.str.len() Out[4]: 0 1.0 1 1.0 2 1.0 3 4.0 4 4.0 5 NaN 6 4.0 7 3.0 8 3.0 dtype: float64
In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank']) In [6]: idx.str.strip() Out[6]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object') In [7]: idx.str.lstrip() Out[7]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object') In [8]: idx.str.rstrip() Out[8]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [9]: df = pd.DataFrame(np.random.randn(3, 2),
...: columns=[' Column A ', ' Column B '], index=range(3))
...:
In [10]: df
Out[10]:
Column A Column B
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
Since df.columns is an Index object, we can use the .str accessor
In [11]: df.columns.str.strip() Out[11]: Index(['Column A', 'Column B'], dtype='object') In [12]: df.columns.str.lower() Out[12]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lower casing all names, and replacing any remaining whitespaces with underscores:
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
In [14]: df
Out[14]:
column_a column_b
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
Note
If you have a Series where lots of elements are repeated
(i.e. the number of unique elements in the Series is a lot smaller than the length of the
Series), it can be faster to convert the original Series to one of type
category and then use .str.<method> or .dt.<property> on that.
The performance difference comes from the fact that, for Series of type category, the
string operations are done on the .categories and not on each element of the
Series.
Please note that a Series of type category with string .categories has
some limitations in comparison to Series of type string (e.g. you can’t add strings to
each other: s + " " + s won’t work if s is a Series of type category). Also,
.str methods which operate on elements of type list are not available on such a
Series.
Warning
Before v.0.25.0, the .str-accessor did only the most rudimentary type checks. Starting with
v.0.25.0, the type of the Series is inferred and the allowed types (i.e. strings) are enforced more rigorously.
Generally speaking, the .str accessor is intended to work only on strings. With very few
exceptions, other uses are not supported, and may be disabled at a later point.
Splitting and replacing strings¶
Methods like split return a Series of lists:
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_')
Out[16]:
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
dtype: object
Elements in the split lists can be accessed using get or [] notation:
In [17]: s2.str.split('_').str.get(1)
Out[17]:
0 b
1 d
2 NaN
3 g
dtype: object
In [18]: s2.str.split('_').str[1]
Out[18]:
0 b
1 d
2 NaN
3 g
dtype: object
It is easy to expand this to return a DataFrame using expand.
In [19]: s2.str.split('_', expand=True)
Out[19]:
0 1 2
0 a b c
1 c d e
2 NaN NaN NaN
3 f g h
It is also possible to limit the number of splits:
In [20]: s2.str.split('_', expand=True, n=1)
Out[20]:
0 1
0 a b_c
1 c d_e
2 NaN NaN
3 f g_h
rsplit is similar to split except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:
In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]:
0 1
0 a_b c
1 c_d e
2 NaN NaN
3 f_g h
replace by default replaces regular expressions:
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
....: '', np.nan, 'CABA', 'dog', 'cat'])
....:
In [23]: s3
Out[23]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6 NaN
7 CABA
8 dog
9 cat
dtype: object
In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[24]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:
# Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])
# This does what you'd naively expect:
In [26]: dollars.str.replace('$', '')
Out[26]:
0 12
1 -10
2 10,000
dtype: object
# But this doesn't:
In [27]: dollars.str.replace('-$', '-')
Out[27]:
0 12
1 -$10
2 $10,000
dtype: object
# We need to escape the special character (for >1 len patterns)
In [28]: dollars.str.replace(r'-\$', '-')
Out[28]:
0 12
1 -10
2 $10,000
dtype: object
New in version 0.23.0.
If you do want literal replacement of a string (equivalent to
str.replace()), you can set the optional regex parameter to
False, rather than escaping each character. In this case both pat
and repl must be strings:
# These lines are equivalent
In [29]: dollars.str.replace(r'-\$', '-')
Out[29]:
0 12
1 -10
2 $10,000
dtype: object
In [30]: dollars.str.replace('-$', '-', regex=False)
Out[30]:
0 12
1 -10
2 $10,000
dtype: object
New in version 0.20.0.
The replace method can also take a callable as replacement. It is called
on every pat using re.sub(). The callable should expect one
positional argument (a regex object) and return a string.
# Reverse every lowercase alphabetic word
In [31]: pat = r'[a-z]+'
In [32]: def repl(m):
....: return m.group(0)[::-1]
....:
In [33]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)
Out[33]:
0 oof 123
1 rab zab
2 NaN
dtype: object
# Using regex groups
In [34]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
In [35]: def repl(m):
....: return m.group('two').swapcase()
....:
In [36]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)
Out[36]:
0 bAR
1 NaN
dtype: object
New in version 0.20.0.
The replace method also accepts a compiled regular expression object
from re.compile() as a pattern. All flags should be included in the
compiled regular expression object.
In [37]: import re
In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
In [39]: s3.str.replace(regex_pat, 'XX-XX ')
Out[39]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Including a flags argument when calling replace with a compiled
regular expression object will raise a ValueError.
In [40]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
---------------------------------------------------------------------------
ValueError: case and flags cannot be set when pat is a compiled regex
Concatenation¶
There are several ways to concatenate a Series or Index, either with itself or others, all based on cat(),
resp. Index.str.cat.
Concatenating a single Series into a string¶
The content of a Series (or Index) can be concatenated:
In [41]: s = pd.Series(['a', 'b', 'c', 'd'])
In [42]: s.str.cat(sep=',')
Out[42]: 'a,b,c,d'
If not specified, the keyword sep for the separator defaults to the empty string, sep='':
In [43]: s.str.cat()
Out[43]: 'abcd'
By default, missing values are ignored. Using na_rep, they can be given a representation:
In [44]: t = pd.Series(['a', 'b', np.nan, 'd']) In [45]: t.str.cat(sep=',') Out[45]: 'a,b,d' In [46]: t.str.cat(sep=',', na_rep='-') Out[46]: 'a,b,-,d'
Concatenating a Series and something list-like into a Series¶
The first argument to cat() can be a list-like object, provided that it matches the length of the calling Series (or Index).
In [47]: s.str.cat(['A', 'B', 'C', 'D'])
Out[47]:
0 aA
1 bB
2 cC
3 dD
dtype: object
Missing values on either side will result in missing values in the result as well, unless na_rep is specified:
In [48]: s.str.cat(t) Out[48]: 0 aa 1 bb 2 NaN 3 dd dtype: object In [49]: s.str.cat(t, na_rep='-') Out[49]: 0 aa 1 bb 2 c- 3 dd dtype: object
Concatenating a Series and something array-like into a Series¶
New in version 0.23.0.
The parameter others can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series (or Index).
In [50]: d = pd.concat([t, s], axis=1)
In [51]: s
Out[51]:
0 a
1 b
2 c
3 d
dtype: object
In [52]: d
Out[52]:
0 1
0 a a
1 b b
2 NaN c
3 d d
In [53]: s.str.cat(d, na_rep='-')
Out[53]:
0 aaa
1 bbb
2 c-c
3 ddd
dtype: object
Concatenating a Series and an indexed object into a Series, with alignment¶
New in version 0.23.0.
For concatenation with a Series or DataFrame, it is possible to align the indexes before concatenation by setting
the join-keyword.
In [54]: u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2]) In [55]: s Out[55]: 0 a 1 b 2 c 3 d dtype: object In [56]: u Out[56]: 1 b 3 d 0 a 2 c dtype: object In [57]: s.str.cat(u) Out[57]: 0 ab 1 bd 2 ca 3 dc dtype: object In [58]: s.str.cat(u, join='left') Out[58]: 0 aa 1 bb 2 cc 3 dd dtype: object
Warning
If the join keyword is not passed, the method cat() will currently fall back to the behavior before version 0.23.0 (i.e. no alignment),
but a FutureWarning will be raised if any of the involved indexes differ, since this default will change to join='left' in a future version.
The usual options are available for join (one of 'left', 'outer', 'inner', 'right').
In particular, alignment also means that the different lengths do not need to coincide anymore.
In [59]: v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4]) In [60]: s Out[60]: 0 a 1 b 2 c 3 d dtype: object In [61]: v Out[61]: -1 z 0 a 1 b 3 d 4 e dtype: object In [62]: s.str.cat(v, join='left', na_rep='-') Out[62]: 0 aa 1 bb 2 c- 3 dd dtype: object In [63]: s.str.cat(v, join='outer', na_rep='-') Out[63]: -1 -z 0 aa 1 bb 2 c- 3 dd 4 -e dtype: object
The same alignment can be used when others is a DataFrame:
In [64]: f = d.loc[[3, 2, 1, 0], :]
In [65]: s
Out[65]:
0 a
1 b
2 c
3 d
dtype: object
In [66]: f
Out[66]:
0 1
3 d d
2 NaN c
1 b b
0 a a
In [67]: s.str.cat(f, join='left', na_rep='-')
Out[67]:
0 aaa
1 bbb
2 c-c
3 ddd
dtype: object
Concatenating a Series and many objects into a Series¶
Several array-like items (specifically: Series, Index, and 1-dimensional variants of np.ndarray)
can be combined in a list-like container (including iterators, dict-views, etc.).
In [68]: s Out[68]: 0 a 1 b 2 c 3 d dtype: object In [69]: u Out[69]: 1 b 3 d 0 a 2 c dtype: object In [70]: s.str.cat([u, u.to_numpy()], join='left') Out[70]: 0 aab 1 bbd 2 cca 3 ddc dtype: object
All elements without an index (e.g. np.ndarray) within the passed list-like must match in length to the calling Series (or Index),
but Series and Index may have arbitrary length (as long as alignment is not disabled with join=None):
In [71]: v Out[71]: -1 z 0 a 1 b 3 d 4 e dtype: object In [72]: s.str.cat([v, u, u.to_numpy()], join='outer', na_rep='-') Out[72]: -1 -z-- 0 aaab 1 bbbd 2 c-ca 3 dddc 4 -e-- dtype: object
If using join='right' on a list-like of others that contains different indexes,
the union of these indexes will be used as the basis for the final concatenation:
In [73]: u.loc[[3]] Out[73]: 3 d dtype: object In [74]: v.loc[[-1, 0]] Out[74]: -1 z 0 a dtype: object In [75]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-') Out[75]: -1 --z 0 a-a 3 dd- dtype: object
Indexing with .str¶
You can use [] notation to directly index by position locations. If you index past the end
of the string, the result will be a NaN.
In [76]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, ....: 'CABA', 'dog', 'cat']) ....: In [77]: s.str[0] Out[77]: 0 A 1 B 2 C 3 A 4 B 5 NaN 6 C 7 d 8 c dtype: object In [78]: s.str[1] Out[78]: 0 NaN 1 NaN 2 NaN 3 a 4 a 5 NaN 6 A 7 o 8 a dtype: object
Extracting substrings¶
Extract first match in each subject (extract)¶
Warning
In version 0.18.0, extract gained the expand argument. When
expand=False it returns a Series, Index, or
DataFrame, depending on the subject and regular expression
pattern (same behavior as pre-0.18.0). When expand=True it
always returns a DataFrame, which is more consistent and less
confusing from the perspective of a user. expand=True is the
default since version 0.23.0.
The extract method accepts a regular expression with at least one
capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
In [79]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'([ab])(\d)', expand=False)
Out[79]:
0 1
0 a 1
1 b 2
2 NaN NaN
Elements that do not match return a row filled with NaN. Thus, a
Series of messy strings can be “converted” into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating get() to access tuples or re.match objects. The
dtype of the result is always object, even if no match is found and
the result only contains NaN.
Named groups like
In [80]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'(?P<letter>[ab])(?P<digit>\d)',
....: expand=False)
....:
Out[80]:
letter digit
0 a 1
1 b 2
2 NaN NaN
and optional groups like
In [81]: pd.Series(['a1', 'b2', '3']).str.extract(r'([ab])?(\d)', expand=False)
Out[81]:
0 1
0 a 1
1 b 2
2 NaN 3
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True.
In [82]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)
Out[82]:
0
0 1
1 2
2 NaN
It returns a Series if expand=False.
In [83]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)
Out[83]:
0 1
1 2
2 NaN
dtype: object
Calling on an Index with a regex with exactly one capture group
returns a DataFrame with one column if expand=True.
In [84]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [85]: s
Out[85]:
A11 a1
B22 b2
C33 c3
dtype: object
In [86]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[86]:
letter
0 A
1 B
2 C
It returns an Index if expand=False.
In [87]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[87]: Index(['A', 'B', 'C'], dtype='object', name='letter')
Calling on an Index with a regex with more than one capture group
returns a DataFrame if expand=True.
In [88]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[88]:
letter 1
0 A 11
1 B 22
2 C 33
It raises ValueError if expand=False.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in
first row)
| 1 group | >1 group | |
| Index | Index | ValueError |
| Series | Series | DataFrame |
Extract all matches in each subject (extractall)¶
New in version 0.18.0.
Unlike extract (which returns only the first match),
In [89]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
In [90]: s
Out[90]:
A a1a2
B b1
C c1
dtype: object
In [91]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
In [92]: s.str.extract(two_groups, expand=True)
Out[92]:
letter digit
A a 1
B b 1
C c 1
the extractall method returns every match. The result of
extractall is always a DataFrame with a MultiIndex on its
rows. The last level of the MultiIndex is named match and
indicates the order in the subject.
In [93]: s.str.extractall(two_groups)
Out[93]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
C 0 c 1
When each subject string in the Series has exactly one match,
In [94]: s = pd.Series(['a3', 'b3', 'c2'])
In [95]: s
Out[95]:
0 a3
1 b3
2 c2
dtype: object
then extractall(pat).xs(0, level='match') gives the same result as
extract(pat).
In [96]: extract_result = s.str.extract(two_groups, expand=True)
In [97]: extract_result
Out[97]:
letter digit
0 a 3
1 b 3
2 c 2
In [98]: extractall_result = s.str.extractall(two_groups)
In [99]: extractall_result
Out[99]:
letter digit
match
0 0 a 3
1 0 b 3
2 0 c 2
In [100]: extractall_result.xs(0, level="match")
Out[100]:
letter digit
0 a 3
1 b 3
2 c 2
Index also supports .str.extractall. It returns a DataFrame which has the
same result as a Series.str.extractall with a default index (starts from 0).
New in version 0.19.0.
In [101]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[101]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
In [102]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[102]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
Testing for Strings that match or contain a pattern¶
You can check whether elements contain a pattern:
In [103]: pattern = r'[0-9][a-z]'
In [104]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[104]:
0 False
1 False
2 True
3 True
4 True
dtype: bool
Or whether elements match a pattern:
In [105]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)
Out[105]:
0 False
1 False
2 True
3 True
4 False
dtype: bool
The distinction between match and contains is strictness: match
relies on strict re.match, while contains relies on re.search.
Methods like match, contains, startswith, and endswith take
an extra na argument so missing values can be considered True or False:
In [106]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [107]: s4.str.contains('A', na=False)
Out[107]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: bool
Creating indicator variables¶
You can extract dummy variables from string columns.
For example if they are separated by a '|':
In [108]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
In [109]: s.str.get_dummies(sep='|')
Out[109]:
a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1
String Index also supports get_dummies which returns a MultiIndex.
New in version 0.18.1.
In [110]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
In [111]: idx.str.get_dummies(sep='|')
Out[111]:
MultiIndex([(1, 0, 0),
(1, 1, 0),
(0, 0, 0),
(1, 0, 1)],
names=['a', 'b', 'c'])
See also get_dummies().
Method summary¶
| Method | Description |
|---|---|
cat() |
Concatenate strings |
split() |
Split strings on delimiter |
rsplit() |
Split strings on delimiter working from the end of the string |
get() |
Index into each element (retrieve i-th element) |
join() |
Join strings in each element of the Series with passed separator |
get_dummies() |
Split strings on the delimiter returning DataFrame of dummy variables |
contains() |
Return boolean array if each string contains pattern/regex |
replace() |
Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence |
repeat() |
Duplicate values (s.str.repeat(3) equivalent to x * 3) |
pad() |
Add whitespace to left, right, or both sides of strings |
center() |
Equivalent to str.center |
ljust() |
Equivalent to str.ljust |
rjust() |
Equivalent to str.rjust |
zfill() |
Equivalent to str.zfill |
wrap() |
Split long strings into lines with length less than a given width |
slice() |
Slice each string in the Series |
slice_replace() |
Replace slice in each string with passed value |
count() |
Count occurrences of pattern |
startswith() |
Equivalent to str.startswith(pat) for each element |
endswith() |
Equivalent to str.endswith(pat) for each element |
findall() |
Compute list of all occurrences of pattern/regex for each string |
match() |
Call re.match on each element, returning matched groups as list |
extract() |
Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
extractall() |
Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
len() |
Compute string lengths |
strip() |
Equivalent to str.strip |
rstrip() |
Equivalent to str.rstrip |
lstrip() |
Equivalent to str.lstrip |
partition() |
Equivalent to str.partition |
rpartition() |
Equivalent to str.rpartition |
lower() |
Equivalent to str.lower |
casefold() |
Equivalent to str.casefold |
upper() |
Equivalent to str.upper |
find() |
Equivalent to str.find |
rfind() |
Equivalent to str.rfind |
index() |
Equivalent to str.index |
rindex() |
Equivalent to str.rindex |
capitalize() |
Equivalent to str.capitalize |
swapcase() |
Equivalent to str.swapcase |
normalize() |
Return Unicode normal form. Equivalent to unicodedata.normalize |
translate() |
Equivalent to str.translate |
isalnum() |
Equivalent to str.isalnum |
isalpha() |
Equivalent to str.isalpha |
isdigit() |
Equivalent to str.isdigit |
isspace() |
Equivalent to str.isspace |
islower() |
Equivalent to str.islower |
isupper() |
Equivalent to str.isupper |
istitle() |
Equivalent to str.istitle |
isnumeric() |
Equivalent to str.isnumeric |
isdecimal() |
Equivalent to str.isdecimal |