Input/output¶
Pickling¶
| read_pickle(path[, compression]) | Load pickled pandas object (or any object) from file. | 
Flat file¶
| read_table(filepath_or_buffer, pathlib.Path, …) | Read general delimited file into DataFrame. | 
| read_csv(filepath_or_buffer, pathlib.Path, …) | Read a comma-separated values (csv) file into DataFrame. | 
| read_fwf(filepath_or_buffer, pathlib.Path, …) | Read a table of fixed-width formatted lines into DataFrame. | 
| read_msgpack(path_or_buf[, encoding, iterator]) | (DEPRECATED) Load msgpack pandas object from the specified file path. | 
Clipboard¶
| read_clipboard([sep]) | Read text from clipboard and pass to read_csv. | 
Excel¶
| read_excel(io[, sheet_name, header, names, …]) | Read an Excel file into a pandas DataFrame. | 
| ExcelFile.parse(self[, sheet_name, header, …]) | Parse specified sheet(s) into a DataFrame | 
| ExcelWriter(path[, engine, date_format, …]) | Class for writing DataFrame objects into excel sheets, default is to use xlwt for xls, openpyxl for xlsx. | 
JSON¶
| read_json([path_or_buf, orient, typ, dtype, …]) | Convert a JSON string to pandas object. | 
| json_normalize(data, List[Dict]], …) | Normalize semi-structured JSON data into a flat table. | 
| build_table_schema(data[, index, …]) | Create a Table schema from data. | 
HDFStore: PyTables (HDF5)¶
| read_hdf(path_or_buf[, key, mode]) | Read from the store, close it if we opened it. | 
| HDFStore.put(self, key, value[, format, append]) | Store object in HDFStore | 
| HDFStore.append(self, key, value[, format, …]) | Append to Table in file. | 
| HDFStore.get(self, key) | Retrieve pandas object stored in file | 
| HDFStore.select(self, key[, where, start, …]) | Retrieve pandas object stored in file, optionally based on where criteria | 
| HDFStore.info(self) | Print detailed information on the store. | 
| HDFStore.keys(self) | Return a (potentially unordered) list of the keys corresponding to the objects stored in the HDFStore. | 
| HDFStore.groups(self) | return a list of all the top-level nodes (that are not themselves a pandas storage object) | 
| HDFStore.walk(self[, where]) | Walk the pytables group hierarchy for pandas objects | 
Feather¶
| read_feather(path[, columns, use_threads]) | Load a feather-format object from the file path. | 
Parquet¶
| read_parquet(path[, engine, columns]) | Load a parquet object from the file path, returning a DataFrame. | 
SAS¶
| read_sas(filepath_or_buffer[, format, …]) | Read SAS files stored as either XPORT or SAS7BDAT format files. | 
SQL¶
| read_sql_table(table_name, con[, schema, …]) | Read SQL database table into a DataFrame. | 
| read_sql_query(sql, con[, index_col, …]) | Read SQL query into a DataFrame. | 
| read_sql(sql, con[, index_col, …]) | Read SQL query or database table into a DataFrame. | 
STATA¶
| read_stata(filepath_or_buffer[, …]) | Read Stata file into DataFrame. | 
| StataReader.data(self, \*\*kwargs) | (DEPRECATED) Read observations from Stata file, converting them into a dataframe | 
| StataReader.data_label | Return data label of Stata file. | 
| StataReader.value_labels(self) | Return a dict, associating each variable name a dict, associating each value its corresponding label. | 
| StataReader.variable_labels(self) | Return variable labels as a dict, associating each variable name with corresponding label. | 
| StataWriter.write_file(self) |