General functions¶
Data manipulations¶
| melt(frame[, id_vars, value_vars, var_name, …]) | Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. | 
| pivot(data[, index, columns, values]) | Return reshaped DataFrame organized by given index / column values. | 
| pivot_table(data[, values, index, columns, …]) | Create a spreadsheet-style pivot table as a DataFrame. | 
| crosstab(index, columns[, values, rownames, …]) | Compute a simple cross tabulation of two (or more) factors. | 
| cut(x, bins[, right, labels, retbins, …]) | Bin values into discrete intervals. | 
| qcut(x, q[, labels, retbins, precision, …]) | Quantile-based discretization function. | 
| merge(left, right[, how, on, left_on, …]) | Merge DataFrame or named Series objects with a database-style join. | 
| merge_ordered(left, right[, on, left_on, …]) | Perform merge with optional filling/interpolation designed for ordered data like time series data. | 
| merge_asof(left, right[, on, left_on, …]) | Perform an asof merge. | 
| concat(objs[, axis, join, join_axes, …]) | Concatenate pandas objects along a particular axis with optional set logic along the other axes. | 
| get_dummies(data[, prefix, prefix_sep, …]) | Convert categorical variable into dummy/indicator variables. | 
| factorize(values[, sort, order, …]) | Encode the object as an enumerated type or categorical variable. | 
| unique(values) | Hash table-based unique. | 
| wide_to_long(df, stubnames, i, j[, sep, suffix]) | Wide panel to long format. | 
Top-level missing data¶
| isna(obj) | Detect missing values for an array-like object. | 
| isnull(obj) | Detect missing values for an array-like object. | 
| notna(obj) | Detect non-missing values for an array-like object. | 
| notnull(obj) | Detect non-missing values for an array-like object. | 
Top-level conversions¶
| to_numeric(arg[, errors, downcast]) | Convert argument to a numeric type. | 
Top-level dealing with datetimelike¶
| to_datetime(arg[, errors, dayfirst, …]) | Convert argument to datetime. | 
| to_timedelta(arg[, unit, box, errors]) | Convert argument to timedelta. | 
| date_range([start, end, periods, freq, tz, …]) | Return a fixed frequency DatetimeIndex. | 
| bdate_range([start, end, periods, freq, tz, …]) | Return a fixed frequency DatetimeIndex, with business day as the default frequency | 
| period_range([start, end, periods, freq, name]) | Return a fixed frequency PeriodIndex, with day (calendar) as the default frequency | 
| timedelta_range([start, end, periods, freq, …]) | Return a fixed frequency TimedeltaIndex, with day as the default frequency | 
| infer_freq(index[, warn]) | Infer the most likely frequency given the input index. | 
Top-level dealing with intervals¶
| interval_range([start, end, periods, freq, …]) | Return a fixed frequency IntervalIndex | 
Top-level evaluation¶
| eval(expr[, parser, engine, truediv, …]) | Evaluate a Python expression as a string using various backends. | 
Hashing¶
| util.hash_array(vals[, encoding, hash_key, …]) | Given a 1d array, return an array of deterministic integers. | 
| util.hash_pandas_object(obj[, index, …]) | Return a data hash of the Index/Series/DataFrame |