pandas.factorize¶
-
pandas.
factorize
(values, sort=False, order=None, na_sentinel=-1, size_hint=None)[source]¶ Encode the object as an enumerated type or categorical variable.
This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function
pandas.factorize()
, and as a methodSeries.factorize()
andIndex.factorize()
.Parameters: - values : sequence
A 1-D sequence. Sequences that aren’t pandas objects are coerced to ndarrays before factorization.
- sort : bool, default False
Sort uniques and shuffle labels to maintain the relationship.
- order : None
Deprecated since version 0.23.0: This parameter has no effect and is deprecated.
- na_sentinel : int, default -1
Value to mark “not found”.
- size_hint : int, optional
Hint to the hashtable sizer.
Returns: - labels : ndarray
An integer ndarray that’s an indexer into uniques.
uniques.take(labels)
will have the same values as values.- uniques : ndarray, Index, or Categorical
The unique valid values. When values is Categorical, uniques is a Categorical. When values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is returned.
Note
Even if there’s a missing value in values, uniques will not contain an entry for it.
Examples
These examples all show factorize as a top-level method like
pd.factorize(values)
. The results are identical for methods likeSeries.factorize()
.>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> labels array([0, 0, 1, 2, 0]) >>> uniques array(['b', 'a', 'c'], dtype=object)
With
sort=True
, the uniques will be sorted, and labels will be shuffled so that the relationship is the maintained.>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> labels array([1, 1, 0, 2, 1]) >>> uniques array(['a', 'b', 'c'], dtype=object)
Missing values are indicated in labels with na_sentinel (
-1
by default). Note that missing values are never included in uniques.>>> labels, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> labels array([ 0, -1, 1, 2, 0]) >>> uniques array(['b', 'a', 'c'], dtype=object)
Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of uniques will differ. For Categoricals, a Categorical is returned.
>>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> labels, uniques = pd.factorize(cat) >>> labels array([0, 0, 1]) >>> uniques [a, c] Categories (3, object): [a, b, c]
Notice that
'b'
is inuniques.categories
, despite not being present incat.values
.For all other pandas objects, an Index of the appropriate type is returned.
>>> cat = pd.Series(['a', 'a', 'c']) >>> labels, uniques = pd.factorize(cat) >>> labels array([0, 0, 1]) >>> uniques Index(['a', 'c'], dtype='object')