DataFrame.
reindex_like
Return an object with matching indices as other object.
Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.
Its row and column indices are used to define the new indices of this object.
Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
None (default): don’t fill gaps
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use next valid observation to fill gap
nearest: use nearest valid observations to fill gap.
Return a new object, even if the passed indexes are the same.
Maximum number of consecutive labels to fill for inexact matches.
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.
abs(index[indexer] - target) <= tolerance
Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
New in version 0.21.0: (list-like tolerance)
Same type as caller, but with changed indices on each axis.
See also
DataFrame.set_index
Set row labels.
DataFrame.reset_index
Remove row labels or move them to new columns.
DataFrame.reindex
Change to new indices or expand indices.
Notes
Same as calling .reindex(index=other.index, columns=other.columns,...).
.reindex(index=other.index, columns=other.columns,...)
Examples
>>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D'))
>>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium
>>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15']))
>>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium
>>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium