Index.
isna
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None, numpy.NaN or pd.NaT, get mapped to True values. Everything else get mapped to False values. Characters such as empty strings ‘’ or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).
None
numpy.NaN
pd.NaT
True
False
numpy.inf
pandas.options.mode.use_inf_as_na = True
A boolean array of whether my values are NA.
See also
Index.notna
Boolean inverse of isna.
Index.dropna
Omit entries with missing values.
Top-level isna.
Series.isna
Detect missing values in Series object.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool)
Empty strings are not considered NA values. None is considered an NA value.
>>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool)
For datetimes, NaT (Not a Time) is considered as an NA value.
>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool)