pandas.DataFrame.clip¶
-
DataFrame.
clip
(lower=None, upper=None, axis=None, inplace=False, *args, **kwargs)[source]¶ Trim values at input threshold(s).
Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.
- Parameters
- lowerfloat or array_like, default None
Minimum threshold value. All values below this threshold will be set to it.
- upperfloat or array_like, default None
Maximum threshold value. All values above this threshold will be set to it.
- axisint or str axis name, optional
Align object with lower and upper along the given axis.
- inplacebool, default False
Whether to perform the operation in place on the data.
- *args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with numpy.
- Returns
- Series or DataFrame
Same type as calling object with the values outside the clip boundaries replaced.
See also
Series.clip
Trim values at input threshold in series.
DataFrame.clip
Trim values at input threshold in dataframe.
numpy.clip
Clip (limit) the values in an array.
Examples
>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5
Clips per column using lower and upper thresholds:
>>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4
Clips using specific lower and upper thresholds per column element:
>>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64
>>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3