DataFrame.
convert_dtypes
Convert columns to best possible dtypes using dtypes supporting pd.NA.
pd.NA
New in version 1.0.0.
Whether object dtypes should be converted to the best possible types.
Whether object dtypes should be converted to StringDtype().
StringDtype()
Whether, if possible, conversion can be done to integer extension types.
Whether object dtypes should be converted to BooleanDtypes().
BooleanDtypes()
Copy of input object with new dtype.
See also
infer_objects
Infer dtypes of objects.
to_datetime
Convert argument to datetime.
to_timedelta
Convert argument to timedelta.
to_numeric
Convert argument to a numeric type.
Notes
By default, convert_dtypes will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support pd.NA. By using the options convert_string, convert_integer, and convert_boolean, it is possible to turn off individual conversions to StringDtype, the integer extension types or BooleanDtype, respectively.
convert_string
convert_integer
convert_boolean
StringDtype
BooleanDtype
For object-dtyped columns, if infer_objects is True, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to StringDtype, BooleanDtype or an appropriate integer extension type, otherwise leave as object.
True
object
If the dtype is integer, convert to an appropriate integer extension type.
If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type.
In the future, as new dtypes are added that support pd.NA, the results of this method will change to support those new dtypes.
Examples
>>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... )
Start with a DataFrame with default dtypes.
>>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0
>>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object
Convert the DataFrame to use best possible dtypes.
>>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 NaN 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0
>>> dfn.dtypes a Int32 b string c boolean d string e Int64 f float64 dtype: object
Start with a Series of strings and missing data represented by np.nan.
np.nan
>>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object
Obtain a Series with dtype StringDtype.
>>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string