Series.
drop
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.
Index labels to drop.
Redundant for application on Series.
Redundant for application on Series, but ‘index’ can be used instead of ‘labels’.
No change is made to the Series; use ‘index’ or ‘labels’ instead.
For MultiIndex, level for which the labels will be removed.
If True, do operation inplace and return None.
If ‘ignore’, suppress error and only existing labels are dropped.
Series with specified index labels removed or None if inplace=True.
inplace=True
If none of the labels are found in the index.
See also
Series.reindex
Return only specified index labels of Series.
Series.dropna
Return series without null values.
Series.drop_duplicates
Return Series with duplicate values removed.
DataFrame.drop
Drop specified labels from rows or columns.
Examples
>>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64
Drop labels B en C
>>> s.drop(labels=['B', 'C']) A 0 dtype: int64
Drop 2nd level label in MultiIndex Series
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64
>>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64