pandas.
read_json
Convert a JSON string to pandas object.
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.json.
file://localhost/path/to/table.json
If you want to pass in a path object, pandas accepts any os.PathLike.
os.PathLike
By file-like object, we refer to objects with a read() method, such as a file handle (e.g. via builtin open function) or StringIO.
read()
open
StringIO
Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:
to_json()
'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
'split'
{index -> [index], columns -> [columns], data -> [values]}
'records' : list like [{column -> value}, ... , {column -> value}]
'records'
[{column -> value}, ... , {column -> value}]
'index' : dict like {index -> {column -> value}}
'index'
{index -> {column -> value}}
'columns' : dict like {column -> {index -> value}}
'columns'
{column -> {index -> value}}
'values' : just the values array
'values'
The allowed and default values depend on the value of the typ parameter.
when typ == 'series',
typ == 'series'
allowed orients are {'split','records','index'}
{'split','records','index'}
default is 'index'
The Series index must be unique for orient 'index'.
when typ == 'frame',
typ == 'frame'
allowed orients are {'split','records','index', 'columns','values', 'table'}
{'split','records','index', 'columns','values', 'table'}
default is 'columns'
The DataFrame index must be unique for orients 'index' and 'columns'.
The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.
The type of object to recover.
If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don’t infer dtypes at all, applies only to the data.
For all orient values except 'table', default is True.
orient
'table'
Changed in version 0.25.0: Not applicable for orient='table'.
orient='table'
Try to convert the axes to the proper dtypes.
If True then default datelike columns may be converted (depending on keep_default_dates). If False, no dates will be converted. If a list of column names, then those columns will be converted and default datelike columns may also be converted (depending on keep_default_dates).
If parsing dates (convert_dates is not False), then try to parse the default datelike columns. A column label is datelike if
it ends with '_at',
'_at'
it ends with '_time',
'_time'
it begins with 'timestamp',
'timestamp'
it is 'modified', or
'modified'
it is 'date'.
'date'
Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.
Deprecated since version 1.0.0.
Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality.
The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.
The encoding to use to decode py3 bytes.
Read the file as a json object per line.
Return JsonReader object for iteration. See the line-delimited json docs for more information on chunksize. This can only be passed if lines=True. If this is None, the file will be read into memory all at once.
chunksize
Changed in version 1.2: JsonReader is a context manager.
JsonReader
For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if path_or_buf is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.
The number of lines from the line-delimited jsonfile that has to be read. This can only be passed if lines=True. If this is None, all the rows will be returned.
New in version 1.1.
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by fsspec, e.g., starting “s3://”, “gcs://”. An error will be raised if providing this argument with a non-fsspec URL. See the fsspec and backend storage implementation docs for the set of allowed keys and values.
fsspec
New in version 1.2.0.
The type returned depends on the value of typ.
See also
DataFrame.to_json
Convert a DataFrame to a JSON string.
Series.to_json
Convert a Series to a JSON string.
Notes
Specific to orient='table', if a DataFrame with a literal Index name of index gets written with to_json(), the subsequent read operation will incorrectly set the Index name to None. This is because index is also used by DataFrame.to_json() to denote a missing Index name, and the subsequent read_json() operation cannot distinguish between the two. The same limitation is encountered with a MultiIndex and any names beginning with 'level_'.
DataFrame
Index
None
DataFrame.to_json()
read_json()
MultiIndex
'level_'
Examples
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2'])
Encoding/decoding a Dataframe using 'split' formatted JSON:
>>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d
Encoding/decoding a Dataframe using 'index' formatted JSON:
>>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d
Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.
>>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d
Encoding with Table Schema
>>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'