pandas.Series.ewm¶
- Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, times=None)[source]¶
Provide exponential weighted (EW) functions.
Available EW functions:
mean()
,var()
,std()
,corr()
,cov()
.Exactly one parameter:
com
,span
,halflife
, oralpha
must be provided.- Parameters
- comfloat, optional
Specify decay in terms of center of mass, \(\alpha = 1 / (1 + com)\), for \(com \geq 0\).
- spanfloat, optional
Specify decay in terms of span, \(\alpha = 2 / (span + 1)\), for \(span \geq 1\).
- halflifefloat, str, timedelta, optional
Specify decay in terms of half-life, \(\alpha = 1 - \exp\left(-\ln(2) / halflife\right)\), for \(halflife > 0\).
If
times
is specified, the time unit (str or timedelta) over which an observation decays to half its value. Only applicable tomean()
and halflife value will not apply to the other functions.New in version 1.1.0.
- alphafloat, optional
Specify smoothing factor \(\alpha\) directly, \(0 < \alpha \leq 1\).
- min_periodsint, default 0
Minimum number of observations in window required to have a value (otherwise result is NA).
- adjustbool, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average).
When
adjust=True
(default), the EW function is calculated using weights \(w_i = (1 - \alpha)^i\). For example, the EW moving average of the series [\(x_0, x_1, ..., x_t\)] would be:
\[y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}\]When
adjust=False
, the exponentially weighted function is calculated recursively:
\[\begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split}\]- ignore_nabool, default False
Ignore missing values when calculating weights; specify
True
to reproduce pre-0.15.0 behavior.When
ignore_na=False
(default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) ifadjust=True
, and \((1-\alpha)^2\) and \(\alpha\) ifadjust=False
.When
ignore_na=True
(reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) ifadjust=True
, and \(1-\alpha\) and \(\alpha\) ifadjust=False
.
- axis{0, 1}, default 0
The axis to use. The value 0 identifies the rows, and 1 identifies the columns.
- timesstr, np.ndarray, Series, default None
New in version 1.1.0.
Times corresponding to the observations. Must be monotonically increasing and
datetime64[ns]
dtype.If str, the name of the column in the DataFrame representing the times.
If 1-D array like, a sequence with the same shape as the observations.
Only applicable to
mean()
.
- Returns
- DataFrame
A Window sub-classed for the particular operation.
Notes
More details can be found at: Exponentially weighted windows.
Examples
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
>>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213
Specifying
times
with a timedeltahalflife
when computing mean.>>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17'] >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean() B 0 0.000000 1 0.585786 2 1.523889 3 1.523889 4 3.233686