pandas.Series.sum¶
- Series.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)[source]¶
Return the sum of the values over the requested axis.
This is equivalent to the method
numpy.sum.- Parameters
- axis{index (0)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_countnon-NA values are present the result will be NA.- **kwargs
Additional keyword arguments to be passed to the function.
- Returns
- scalar or Series (if level specified)
See also
Series.sumReturn the sum.
Series.minReturn the minimum.
Series.maxReturn the maximum.
Series.idxminReturn the index of the minimum.
Series.idxmaxReturn the index of the maximum.
DataFrame.sumReturn the sum over the requested axis.
DataFrame.minReturn the minimum over the requested axis.
DataFrame.maxReturn the maximum over the requested axis.
DataFrame.idxminReturn the index of the minimum over the requested axis.
DataFrame.idxmaxReturn the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.sum() 14
Sum using level names, as well as indices.
>>> s.sum(level='blooded') blooded warm 6 cold 8 Name: legs, dtype: int64
>>> s.sum(level=0) blooded warm 6 cold 8 Name: legs, dtype: int64
By default, the sum of an empty or all-NA Series is
0.>>> pd.Series([]).sum() # min_count=0 is the default 0.0
This can be controlled with the
min_countparameter. For example, if you’d like the sum of an empty series to be NaN, passmin_count=1.>>> pd.Series([]).sum(min_count=1) nan
Thanks to the
skipnaparameter,min_counthandles all-NA and empty series identically.>>> pd.Series([np.nan]).sum() 0.0
>>> pd.Series([np.nan]).sum(min_count=1) nan