pandas.io.formats.style.Styler.apply¶
-
Styler.
apply
(func, axis=0, subset=None, **kwargs)[source]¶ Apply a CSS-styling function column-wise, row-wise, or table-wise.
Updates the HTML representation with the result.
- Parameters
- funcfunction
func
should take a Series ifaxis
in [0,1] and return an object of same length, also with identical index if the object is a Series.func
should take a DataFrame ifaxis
isNone
and return either an ndarray with the same shape or a DataFrame with identical columns and index.Changed in version 1.3.0.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Apply to each column (
axis=0
or'index'
), to each row (axis=1
or'columns'
), or to the entire DataFrame at once withaxis=None
.- subsetlabel, array-like, IndexSlice, optional
A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit
data
to before applying the function.- **kwargsdict
Pass along to
func
.
- Returns
- selfStyler
See also
Styler.applymap
Apply a CSS-styling function elementwise.
Notes
The elements of the output of
func
should be CSS styles as strings, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string orNone
.This is similar to
DataFrame.apply
, except thataxis=None
applies the function to the entire DataFrame at once, rather than column-wise or row-wise.Examples
>>> def highlight_max(x, color): ... return np.where(x == np.nanmax(x.to_numpy()), f"color: {color};", None) >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) >>> df.style.apply(highlight_max, color='red') >>> df.style.apply(highlight_max, color='blue', axis=1) >>> df.style.apply(highlight_max, color='green', axis=None)
Using
subset
to restrict application to a single column or multiple columns>>> df.style.apply(highlight_max, color='red', subset="A") >>> df.style.apply(highlight_max, color='red', subset=["A", "B"])
Using a 2d input to
subset
to select rows in addition to columns>>> df.style.apply(highlight_max, color='red', subset=([0,1,2], slice(None)) >>> df.style.apply(highlight_max, color='red', subset=(slice(0,5,2), "A")