Input/output

Pickling

read_pickle(filepath_or_buffer[, …])

Load pickled pandas object (or any object) from file.

DataFrame.to_pickle(path[, compression, …])

Pickle (serialize) object to file.

Flat file

read_table(filepath_or_buffer[, sep, …])

Read general delimited file into DataFrame.

read_csv(filepath_or_buffer[, sep, …])

Read a comma-separated values (csv) file into DataFrame.

DataFrame.to_csv([path_or_buf, sep, na_rep, …])

Write object to a comma-separated values (csv) file.

read_fwf(filepath_or_buffer[, colspecs, …])

Read a table of fixed-width formatted lines into DataFrame.

Clipboard

read_clipboard([sep])

Read text from clipboard and pass to read_csv.

DataFrame.to_clipboard([excel, sep])

Copy object to the system clipboard.

Excel

read_excel(io[, sheet_name, header, names, …])

Read an Excel file into a pandas DataFrame.

DataFrame.to_excel(excel_writer[, …])

Write object to an Excel sheet.

ExcelFile.parse([sheet_name, header, names, …])

Parse specified sheet(s) into a DataFrame.

Styler.to_excel(excel_writer[, sheet_name, …])

Write Styler to an Excel sheet.

ExcelWriter(path[, engine, date_format, …])

Class for writing DataFrame objects into excel sheets.

JSON

read_json([path_or_buf, orient, typ, dtype, …])

Convert a JSON string to pandas object.

to_json(path_or_buf, obj[, orient, …])

build_table_schema(data[, index, …])

Create a Table schema from data.

HTML

read_html(io[, match, flavor, header, …])

Read HTML tables into a list of DataFrame objects.

DataFrame.to_html([buf, columns, col_space, …])

Render a DataFrame as an HTML table.

Styler.to_html([buf, table_uuid, …])

Write Styler to a file, buffer or string in HTML-CSS format.

XML

read_xml(path_or_buffer[, xpath, …])

Read XML document into a DataFrame object.

DataFrame.to_xml([path_or_buffer, index, …])

Render a DataFrame to an XML document.

Latex

DataFrame.to_latex([buf, columns, …])

Render object to a LaTeX tabular, longtable, or nested table/tabular.

Styler.to_latex([buf, column_format, …])

Write Styler to a file, buffer or string in LaTeX format.

HDFStore: PyTables (HDF5)

read_hdf(path_or_buf[, key, mode, errors, …])

Read from the store, close it if we opened it.

HDFStore.put(key, value[, format, index, …])

Store object in HDFStore.

HDFStore.append(key, value[, format, axes, …])

Append to Table in file.

HDFStore.get(key)

Retrieve pandas object stored in file.

HDFStore.select(key[, where, start, stop, …])

Retrieve pandas object stored in file, optionally based on where criteria.

HDFStore.info()

Print detailed information on the store.

HDFStore.keys([include])

Return a list of keys corresponding to objects stored in HDFStore.

HDFStore.groups()

Return a list of all the top-level nodes.

HDFStore.walk([where])

Walk the pytables group hierarchy for pandas objects.

Warning

One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing.

Feather

read_feather(path[, columns, use_threads, …])

Load a feather-format object from the file path.

DataFrame.to_feather(path, **kwargs)

Write a DataFrame to the binary Feather format.

Parquet

read_parquet(path[, engine, columns, …])

Load a parquet object from the file path, returning a DataFrame.

DataFrame.to_parquet([path, engine, …])

Write a DataFrame to the binary parquet format.

ORC

read_orc(path[, columns])

Load an ORC object from the file path, returning a DataFrame.

SAS

read_sas(filepath_or_buffer[, format, …])

Read SAS files stored as either XPORT or SAS7BDAT format files.

SPSS

read_spss(path[, usecols, convert_categoricals])

Load an SPSS file from the file path, returning a DataFrame.

SQL

read_sql_table(table_name, con[, schema, …])

Read SQL database table into a DataFrame.

read_sql_query(sql, con[, index_col, …])

Read SQL query into a DataFrame.

read_sql(sql, con[, index_col, …])

Read SQL query or database table into a DataFrame.

DataFrame.to_sql(name, con[, schema, …])

Write records stored in a DataFrame to a SQL database.

Google BigQuery

read_gbq(query[, project_id, index_col, …])

Load data from Google BigQuery.

STATA

read_stata(filepath_or_buffer[, …])

Read Stata file into DataFrame.

DataFrame.to_stata(path[, convert_dates, …])

Export DataFrame object to Stata dta format.

StataReader.data_label

Return data label of Stata file.

StataReader.value_labels()

Return a dict, associating each variable name a dict, associating each value its corresponding label.

StataReader.variable_labels()

Return variable labels as a dict, associating each variable name with corresponding label.

StataWriter.write_file()