pandas.core.window.expanding.Expanding.var¶
- Expanding.var(ddof=1, *args, **kwargs)[source]¶
Calculate the expanding variance.
- Parameters
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements.- *args
For NumPy compatibility and will not have an effect on the result.
- **kwargs
For NumPy compatibility and will not have an effect on the result.
- Returns
- Series or DataFrame
Return type is the same as the original object.
See also
numpy.var
Equivalent method for NumPy array.
pandas.Series.expanding
Calling expanding with Series data.
pandas.DataFrame.expanding
Calling expanding with DataFrames.
pandas.Series.var
Aggregating var for Series.
pandas.DataFrame.var
Aggregating var for DataFrame.
Notes
The default
ddof
of 1 used inSeries.var()
is different than the defaultddof
of 0 innumpy.var()
.A minimum of one period is required for the rolling calculation.
Examples
>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64