pandas.core.window.rolling.Rolling.sum¶
- Rolling.sum(*args, engine=None, engine_kwargs=None, **kwargs)[source]¶
Calculate the rolling sum.
- Parameters
- *args
For NumPy compatibility and will not have an effect on the result.
- enginestr, default None
'cython'
: Runs the operation through C-extensions from cython.'numba'
: Runs the operation through JIT compiled code from numba.None
: Defaults to'cython'
or globally settingcompute.use_numba
New in version 1.3.0.
- engine_kwargsdict, default None
For
'cython'
engine, there are no acceptedengine_kwargs
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
New in version 1.3.0.
- **kwargs
For NumPy compatibility and will not have an effect on the result.
- Returns
- Series or DataFrame
Return type is the same as the original object.
See also
pandas.Series.rolling
Calling rolling with Series data.
pandas.DataFrame.rolling
Calling rolling with DataFrames.
pandas.Series.sum
Aggregating sum for Series.
pandas.DataFrame.sum
Aggregating sum for DataFrame.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
>>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64
>>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64
>>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64
For DataFrame, each sum is computed column-wise.
>>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25
>>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0