pandas.io.formats.style.Styler.format¶
- Styler.format(formatter=None, subset=None, na_rep=None, precision=None, decimal='.', thousands=None, escape=None, hyperlinks=None)[source]¶
Format the text display value of cells.
- Parameters
- formatterstr, callable, dict or None
Object to define how values are displayed. See notes.
- subsetlabel, array-like, IndexSlice, optional
A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit
datato before applying the function.- na_repstr, optional
Representation for missing values. If
na_repis None, no special formatting is applied.New in version 1.0.0.
- precisionint, optional
Floating point precision to use for display purposes, if not determined by the specified
formatter.New in version 1.3.0.
- decimalstr, default “.”
Character used as decimal separator for floats, complex and integers.
New in version 1.3.0.
- thousandsstr, optional, default None
Character used as thousands separator for floats, complex and integers.
New in version 1.3.0.
- escapestr, optional
Use ‘html’ to replace the characters
&,<,>,', and"in cell display string with HTML-safe sequences. Use ‘latex’ to replace the characters&,%,$,#,_,{,},~,^, and\in the cell display string with LaTeX-safe sequences. Escaping is done beforeformatter.New in version 1.3.0.
- hyperlinks{“html”, “latex”}, optional
Convert string patterns containing https://, http://, ftp:// or www. to HTML <a> tags as clickable URL hyperlinks if “html”, or LaTeX href commands if “latex”.
New in version 1.4.0.
- Returns
- selfStyler
See also
Styler.format_indexFormat the text display value of index labels.
Notes
This method assigns a formatting function,
formatter, to each cell in the DataFrame. IfformatterisNone, then the default formatter is used. If a callable then that function should take a data value as input and return a displayable representation, such as a string. Ifformatteris given as a string this is assumed to be a valid Python format specification and is wrapped to a callable asstring.format(x). If adictis given, keys should correspond to column names, and values should be string or callable, as above.The default formatter currently expresses floats and complex numbers with the pandas display precision unless using the
precisionargument here. The default formatter does not adjust the representation of missing values unless thena_repargument is used.The
subsetargument defines which region to apply the formatting function to. If theformatterargument is given in dict form but does not include all columns within the subset then these columns will have the default formatter applied. Any columns in the formatter dict excluded from the subset will be ignored.When using a
formatterstring the dtypes must be compatible, otherwise a ValueError will be raised.When instantiating a Styler, default formatting can be applied be setting the
pandas.options:styler.format.formatter: default None.styler.format.na_rep: default None.styler.format.precision: default 6.styler.format.decimal: default “.”.styler.format.thousands: default None.styler.format.escape: default None.
Warning
Styler.format is ignored when using the output format Styler.to_excel, since Excel and Python have inherrently different formatting structures. However, it is possible to use the number-format pseudo CSS attribute to force Excel permissible formatting. See examples.
Examples
Using
na_repandprecisionwith the defaultformatter>>> df = pd.DataFrame([[np.nan, 1.0, 'A'], [2.0, np.nan, 3.0]]) >>> df.style.format(na_rep='MISS', precision=3) 0 1 2 0 MISS 1.000 A 1 2.000 MISS 3.000
Using a
formatterspecification on consistent column dtypes>>> df.style.format('{:.2f}', na_rep='MISS', subset=[0,1]) 0 1 2 0 MISS 1.00 A 1 2.00 MISS 3.000000
Using the default
formatterfor unspecified columns>>> df.style.format({0: '{:.2f}', 1: '£ {:.1f}'}, na_rep='MISS', precision=1) ... 0 1 2 0 MISS £ 1.0 A 1 2.00 MISS 3.0
Multiple
na_reporprecisionspecifications under the defaultformatter.>>> df.style.format(na_rep='MISS', precision=1, subset=[0]) ... .format(na_rep='PASS', precision=2, subset=[1, 2]) 0 1 2 0 MISS 1.00 A 1 2.0 PASS 3.00
Using a callable
formatterfunction.>>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' >>> df.style.format({0: '{:.1f}', 2: func}, precision=4, na_rep='MISS') ... 0 1 2 0 MISS 1.0000 STRING 1 2.0 MISS FLOAT
Using a
formatterwith HTMLescapeandna_rep.>>> df = pd.DataFrame([['<div></div>', '"A&B"', None]]) >>> s = df.style.format( ... '<a href="a.com/{0}">{0}</a>', escape="html", na_rep="NA" ... ) >>> s.to_html() ... <td .. ><a href="a.com/<div></div>"><div></div></a></td> <td .. ><a href="a.com/"A&B"">"A&B"</a></td> <td .. >NA</td> ...
Using a
formatterwith LaTeXescape.>>> df = pd.DataFrame([["123"], ["~ ^"], ["$%#"]]) >>> df.style.format("\\textbf{{{}}}", escape="latex").to_latex() ... \begin{tabular}{ll} {} & {0} \\ 0 & \textbf{123} \\ 1 & \textbf{\textasciitilde \space \textasciicircum } \\ 2 & \textbf{\$\%\#} \\ \end{tabular}
Pandas defines a number-format pseudo CSS attribute instead of the .format method to create to_excel permissible formatting. Note that semi-colons are CSS protected characters but used as separators in Excel’s format string. Replace semi-colons with the section separator character (ASCII-245) when defining the formatting here.
>>> df = pd.DataFrame({"A": [1, 0, -1]}) >>> pseudo_css = "number-format: 0§[Red](0)§-§@;" >>> df.style.applymap(lambda v: css).to_excel("formatted_file.xlsx") ...