pandas.DataFrame.sort_values¶
- DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)[source]¶
Sort by the values along either axis.
- Parameters
- bystr or list of str
Name or list of names to sort by.
if axis is 0 or ‘index’ then by may contain index levels and/or column labels.
if axis is 1 or ‘columns’ then by may contain column levels and/or index labels.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis to be sorted.
- ascendingbool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- inplacebool, default False
If True, perform operation in-place.
- kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’
Choice of sorting algorithm. See also
numpy.sort()
for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.- na_position{‘first’, ‘last’}, default ‘last’
Puts NaNs at the beginning if first; last puts NaNs at the end.
- ignore_indexbool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
New in version 1.0.0.
- keycallable, optional
Apply the key function to the values before sorting. This is similar to the key argument in the builtin
sorted()
function, with the notable difference that this key function should be vectorized. It should expect aSeries
and return a Series with the same shape as the input. It will be applied to each column in by independently.New in version 1.1.0.
- Returns
- DataFrame or None
DataFrame with sorted values or None if
inplace=True
.
See also
DataFrame.sort_index
Sort a DataFrame by the index.
Series.sort_values
Similar method for a Series.
Examples
>>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... 'col4': ['a', 'B', 'c', 'D', 'e', 'F'] ... }) >>> df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F
Sort by col1
>>> df.sort_values(by=['col1']) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D
Sort Descending
>>> df.sort_values(by='col1', ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 NaN 8 4 D
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 col4 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B
Sorting with a key function
>>> df.sort_values(by='col4', key=lambda col: col.str.lower()) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F
Natural sort with the key argument, using the natsort <https://github.com/SethMMorton/natsort> package.
>>> df = pd.DataFrame({ ... "time": ['0hr', '128hr', '72hr', '48hr', '96hr'], ... "value": [10, 20, 30, 40, 50] ... }) >>> df time value 0 0hr 10 1 128hr 20 2 72hr 30 3 48hr 40 4 96hr 50 >>> from natsort import index_natsorted >>> df.sort_values( ... by="time", ... key=lambda x: np.argsort(index_natsorted(df["time"])) ... ) time value 0 0hr 10 3 48hr 40 2 72hr 30 4 96hr 50 1 128hr 20