pandas.DataFrame.to_dict¶
- DataFrame.to_dict(orient='dict', into=<class 'dict'>)[source]¶
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters (see below).
- Parameters
- orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘tight’, ‘records’, ‘index’}
Determines the type of the values of the dictionary.
‘dict’ (default) : dict like {column -> {index -> value}}
‘list’ : dict like {column -> [values]}
‘series’ : dict like {column -> Series(values)}
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘tight’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values], ‘index_names’ -> [index.names], ‘column_names’ -> [column.names]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
Abbreviations are allowed. s indicates series and sp indicates split.
New in version 1.4.0: ‘tight’ as an allowed value for the
orient
argument- intoclass, default dict
The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
- Returns
- dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter.
See also
DataFrame.from_dict
Create a DataFrame from a dictionary.
DataFrame.to_json
Convert a DataFrame to JSON format.
Examples
>>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64}
>>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
>>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a defaultdict, you need to initialize it:
>>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]