pandas.Series.mask#
- Series.mask(cond, other=nan, *, inplace=False, axis=None, level=None, errors=_NoDefault.no_default, try_cast=_NoDefault.no_default)[source]#
Replace values where the condition is True.
- Parameters
- condbool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- otherscalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- inplacebool, default False
Whether to perform the operation in place on the data.
- axisint, default None
Alignment axis if needed. For Series this parameter is unused and defaults to 0.
- levelint, default None
Alignment level if needed.
- errorsstr, {‘raise’, ‘ignore’}, default ‘raise’
Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.
‘raise’ : allow exceptions to be raised.
‘ignore’ : suppress exceptions. On error return original object.
Deprecated since version 1.5.0: This argument had no effect.
- try_castbool, default None
Try to cast the result back to the input type (if possible).
Deprecated since version 1.3.0: Manually cast back if necessary.
- Returns
- Same type as caller or None if
inplace=True
.
- Same type as caller or None if
See also
DataFrame.where()
Return an object of same shape as self.
Notes
The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond
isFalse
the element is used; otherwise the corresponding element from the DataFrameother
is used. If the axis ofother
does not align with axis ofcond
Series/DataFrame, the misaligned index positions will be filled with True.The signature for
DataFrame.where()
differs fromnumpy.where()
. Roughlydf1.where(m, df2)
is equivalent tonp.where(m, df1, df2)
.For further details and examples see the
mask
documentation in indexing.The dtype of the object takes precedence. The fill value is casted to the object’s dtype, if this can be done losslessly.
Examples
>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
>>> s = pd.Series(range(5)) >>> t = pd.Series([True, False]) >>> s.where(t, 99) 0 0 1 99 2 99 3 99 4 99 dtype: int64 >>> s.mask(t, 99) 0 99 1 1 2 99 3 99 4 99 dtype: int64
>>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> s.mask(s > 1, 10) 0 0 1 1 2 10 3 10 4 10 dtype: int64
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True