pandas.Series.notna#
- Series.notna()[source]#
- Detect existing (non-missing) values. - Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings - ''or- numpy.infare not considered NA values (unless you set- pandas.options.mode.use_inf_as_na = True). NA values, such as None or- numpy.NaN, get mapped to False values.- Returns
- Series
- Mask of bool values for each element in Series that indicates whether an element is not an NA value. 
 
 - See also - Series.notnull
- Alias of notna. 
- Series.isna
- Boolean inverse of notna. 
- Series.dropna
- Omit axes labels with missing values. 
- notna
- Top-level notna. 
 - Examples - Show which entries in a DataFrame are not NA. - >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker - >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True - Show which entries in a Series are not NA. - >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 - >>> ser.notna() 0 True 1 True 2 False dtype: bool